1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "cblas_wrappers.hh"
#include "lapack_wrappers.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
#include "check_gemm.hh"
// -----------------------------------------------------------------------------
template <typename TA, typename TB, typename TC>
void test_batch_hemm_device_work( Params& params, bool run )
{
using namespace testsweeper;
using blas::Side;
using blas::Layout;
using scalar_t = blas::scalar_type< TA, TB, TC >;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
blas::Layout layout = params.layout();
blas::Side side_ = params.side();
blas::Uplo uplo_ = params.uplo();
scalar_t alpha_ = params.alpha.get<scalar_t>();
scalar_t beta_ = params.beta.get<scalar_t>();
int64_t m_ = params.dim.m();
int64_t n_ = params.dim.n();
size_t batch = params.batch();
int64_t device = params.device();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.gflops();
params.ref_time();
params.ref_gflops();
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// setup
int64_t An = (side_ == Side::Left ? m_ : n_);
int64_t Cm = m_;
int64_t Cn = n_;
if (layout == Layout::RowMajor)
std::swap( Cm, Cn );
int64_t lda_ = roundup( An, align );
int64_t ldb_ = roundup( Cm, align );
int64_t ldc_ = roundup( Cm, align );
size_t size_A = size_t(lda_)*An;
size_t size_B = size_t(ldb_)*Cn;
size_t size_C = size_t(ldc_)*Cn;
TA* A = new TA[ batch * size_A ];
TB* B = new TB[ batch * size_B ];
TC* C = new TC[ batch * size_C ];
TC* Cref = new TC[ batch * size_C ];
// device specifics
blas::Queue queue( device );
TA* dA = blas::device_malloc<TA>( batch * size_A, queue );
TB* dB = blas::device_malloc<TB>( batch * size_B, queue );
TC* dC = blas::device_malloc<TC>( batch * size_C, queue );
// pointer arrays
std::vector<TA*> Aarray( batch );
std::vector<TB*> Barray( batch );
std::vector<TC*> Carray( batch );
std::vector<TC*> Crefarray( batch );
std::vector<TA*> dAarray( batch );
std::vector<TB*> dBarray( batch );
std::vector<TC*> dCarray( batch );
for (size_t s = 0; s < batch; ++s) {
Aarray[s] = A + s * size_A;
Barray[s] = B + s * size_B;
Carray[s] = C + s * size_C;
Crefarray[s] = Cref + s * size_C;
dAarray[s] = dA + s * size_A;
dBarray[s] = dB + s * size_B;
dCarray[s] = dC + s * size_C;
}
// info
std::vector<int64_t> info( batch );
// wrap scalar arguments in std::vector
std::vector<blas::Side> side(1, side_);
std::vector<blas::Uplo> uplo(1, uplo_);
std::vector<int64_t> m(1, m_);
std::vector<int64_t> n(1, n_);
std::vector<int64_t> lda(1, lda_);
std::vector<int64_t> ldb(1, ldb_);
std::vector<int64_t> ldc(1, ldc_);
std::vector<scalar_t> alpha(1, alpha_);
std::vector<scalar_t> beta(1, beta_);
int64_t idist = 1;
int iseed[4] = { 0, 0, 0, 1 };
lapack_larnv( idist, iseed, batch * size_A, A );
lapack_larnv( idist, iseed, batch * size_B, B );
lapack_larnv( idist, iseed, batch * size_C, C );
lapack_lacpy( "g", Cm, batch * Cn, C, ldc_, Cref, ldc_ );
blas::device_copy_matrix(An, batch * An, A, lda_, dA, lda_, queue);
blas::device_copy_matrix(Cm, batch * Cn, B, ldb_, dB, ldb_, queue);
blas::device_copy_matrix(Cm, batch * Cn, C, ldc_, dC, ldc_, queue);
queue.sync();
// norms for error check
real_t work[1];
real_t* Anorm = new real_t[ batch ];
real_t* Bnorm = new real_t[ batch ];
real_t* Cnorm = new real_t[ batch ];
for (size_t s = 0; s < batch; ++s) {
Anorm[s] = lapack_lansy( "f", to_c_string( uplo_ ), An, Aarray[s], lda_, work );
Bnorm[s] = lapack_lange( "f", Cm, Cn, Barray[s], ldb_, work );
Cnorm[s] = lapack_lange( "f", Cm, Cn, Carray[s], ldc_, work );
}
// decide error checking mode
info.resize( 0 );
// run test
testsweeper::flush_cache( params.cache() );
double time = get_wtime();
blas::batch::hemm( layout, side, uplo, m, n, alpha, dAarray, lda, dBarray, ldb, beta, dCarray, ldc,
batch, info, queue);
queue.sync();
time = get_wtime() - time;
double gflop = batch * blas::Gflop< scalar_t >::hemm( side_, m_, n_ );
params.time() = time;
params.gflops() = gflop / time;
blas::device_copy_matrix(Cm, batch * Cn, dC, ldc_, C, ldc_, queue);
queue.sync();
if (params.ref() == 'y' || params.check() == 'y') {
// run reference
testsweeper::flush_cache( params.cache() );
time = get_wtime();
for (size_t s = 0; s < batch; ++s) {
cblas_hemm( cblas_layout_const(layout),
cblas_side_const(side_),
cblas_uplo_const(uplo_),
m_, n_, alpha_, Aarray[s], lda_, Barray[s], ldb_, beta_, Crefarray[s], ldc_ );
}
time = get_wtime() - time;
params.ref_time() = time;
params.ref_gflops() = gflop / time;
// check error compared to reference
real_t err, error = 0;
bool ok, okay = true;
for (size_t s = 0; s < batch; ++s) {
check_gemm( Cm, Cn, An, alpha_, beta_, Anorm[s], Bnorm[s], Cnorm[s],
Crefarray[s], ldc_, Carray[s], ldc_, verbose, &err, &ok );
error = std::max( error, err );
okay &= ok;
}
params.error() = error;
params.okay() = okay;
}
delete[] A;
delete[] B;
delete[] C;
delete[] Cref;
delete[] Anorm;
delete[] Bnorm;
delete[] Cnorm;
blas::device_free( dA, queue );
blas::device_free( dB, queue );
blas::device_free( dC, queue );
}
// -----------------------------------------------------------------------------
void test_batch_hemm_device( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_batch_hemm_device_work< float, float, float >( params, run );
break;
case testsweeper::DataType::Double:
test_batch_hemm_device_work< double, double, double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_batch_hemm_device_work< std::complex<float>, std::complex<float>,
std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_batch_hemm_device_work< std::complex<double>, std::complex<double>,
std::complex<double> >( params, run );
break;
default:
throw std::exception();
break;
}
}
|