File: test_batch_syrk_device.cc

package info (click to toggle)
blaspp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,636 kB
  • sloc: cpp: 29,332; ansic: 8,448; python: 2,192; xml: 182; perl: 101; makefile: 53; sh: 7
file content (198 lines) | stat: -rw-r--r-- 6,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#include "test.hh"
#include "cblas_wrappers.hh"
#include "lapack_wrappers.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
#include "check_gemm.hh"

// -----------------------------------------------------------------------------
template <typename TA, typename TC>
void test_batch_syrk_device_work( Params& params, bool run )
{
    using namespace testsweeper;
    using blas::Op;
    using blas::Layout;
    using scalar_t = blas::scalar_type< TA, TC >;
    using real_t   = blas::real_type< scalar_t >;

    // get & mark input values
    blas::Layout layout = params.layout();
    blas::Op trans_     = params.trans();
    blas::Uplo uplo_    = params.uplo();
    scalar_t alpha_     = params.alpha.get<scalar_t>();
    scalar_t beta_      = params.beta.get<scalar_t>();
    int64_t n_          = params.dim.n();
    int64_t k_          = params.dim.k();
    size_t  batch       = params.batch();
    int64_t device      = params.device();
    int64_t align       = params.align();
    int64_t verbose     = params.verbose();

    // mark non-standard output values
    params.gflops();
    params.ref_time();
    params.ref_gflops();

    if (! run)
        return;

    if (blas::get_device_count() == 0) {
        params.msg() = "skipping: no GPU devices or no GPU support";
        return;
    }

    // setup
    int64_t Am = (trans_ == Op::NoTrans ? n_ : k_);
    int64_t An = (trans_ == Op::NoTrans ? k_ : n_);
    if (layout == Layout::RowMajor)
        std::swap( Am, An );
    int64_t lda_ = roundup( Am, align );
    int64_t ldc_ = roundup( n_, align );
    size_t size_A = size_t(lda_)*An;
    size_t size_C = size_t(ldc_)*n_;
    TA* A    = new TA[ batch * size_A ];
    TC* C    = new TC[ batch * size_C ];
    TC* Cref = new TC[ batch * size_C ];

    // device specifics
    blas::Queue queue( device );
    TA* dA = blas::device_malloc<TA>( batch * size_A, queue );
    TC* dC = blas::device_malloc<TC>( batch * size_C, queue );

    // pointer arrays
    std::vector<TA*>    Aarray( batch );
    std::vector<TC*>    Carray( batch );
    std::vector<TC*> Crefarray( batch );
    std::vector<TA*>   dAarray( batch );
    std::vector<TC*>   dCarray( batch );

    for (size_t i = 0; i < batch; ++i) {
         Aarray[i]   =  A   + i * size_A;
         Carray[i]   =  C   + i * size_C;
        Crefarray[i] = Cref + i * size_C;
        dAarray[i]   = dA   + i * size_A;
        dCarray[i]   = dC   + i * size_C;
    }

    // info
    std::vector<int64_t> info( batch );

    // wrap scalar arguments in std::vector
    std::vector<blas::Uplo> uplo(1, uplo_);
    std::vector<blas::Op>   trans(1, trans_);
    std::vector<int64_t>    n(1, n_);
    std::vector<int64_t>    k(1, k_);
    std::vector<int64_t>    lda(1, lda_);
    std::vector<int64_t>    ldc(1, ldc_);
    std::vector<scalar_t>   alpha(1, alpha_);
    std::vector<scalar_t>   beta(1, beta_);

    int64_t idist = 1;
    int iseed[4] = { 0, 0, 0, 1 };
    lapack_larnv( idist, iseed, batch * size_A, A );
    lapack_larnv( idist, iseed, batch * size_C, C );
    lapack_lacpy( "g", n_, batch * n_, C, ldc_, Cref, ldc_ );

    blas::device_copy_matrix(Am, batch * An, A, lda_, dA, lda_, queue);
    blas::device_copy_matrix(n_, batch * n_, C, ldc_, dC, ldc_, queue);
    queue.sync();

    // norms for error check
    real_t work[1];
    real_t* Anorm = new real_t[ batch ];
    real_t* Cnorm = new real_t[ batch ];

    for (size_t s = 0; s < batch; ++s) {
        Anorm[s] = lapack_lange( "f", Am, An, Aarray[s], lda_, work );
        Cnorm[s] = lapack_lansy( "f", to_c_string( uplo_ ), n_, Carray[s], ldc_, work );
    }

    // decide error checking mode
    info.resize( 0 );

    // run test
    testsweeper::flush_cache( params.cache() );
    double time = get_wtime();
    blas::batch::syrk( layout, uplo, trans, n, k, alpha, dAarray, lda, beta, dCarray, ldc,
                       batch, info, queue );
    queue.sync();
    time = get_wtime() - time;

    double gflop = batch * blas::Gflop< scalar_t >::syrk( n_, k_ );
    params.time()   = time;
    params.gflops() = gflop / time;
    blas::device_copy_matrix(n_, batch * n_, dC, ldc_, C, ldc_, queue);
    queue.sync();

    if (params.ref() == 'y' || params.check() == 'y') {
        // run reference
        testsweeper::flush_cache( params.cache() );
        time = get_wtime();
        for (size_t s = 0; s < batch; ++s) {
            cblas_syrk( cblas_layout_const(layout),
                        cblas_uplo_const(uplo_),
                        cblas_trans_const(trans_),
                        n_, k_, alpha_, Aarray[s], lda_, beta_, Crefarray[s], ldc_ );
        }
        time = get_wtime() - time;

        params.ref_time()   = time;
        params.ref_gflops() = gflop / time;

        // check error compared to reference
        real_t err, error = 0;
        bool ok, okay = true;
        for (size_t s = 0; s < batch; ++s) {
            check_herk( uplo_, n_, k_, alpha_, beta_, Anorm[s], Anorm[s], Cnorm[s],
                        Crefarray[s], ldc_, Carray[s], ldc_, verbose, &err, &ok );

            error = std::max( error, err );
            okay &= ok;
        }

        params.error() = error;
        params.okay() = okay;
    }

    delete[] A;
    delete[] C;
    delete[] Cref;
    delete[] Anorm;
    delete[] Cnorm;

    blas::device_free( dA, queue );
    blas::device_free( dC, queue );
}

// -----------------------------------------------------------------------------
void test_batch_syrk_device( Params& params, bool run )
{
    switch (params.datatype()) {
        case testsweeper::DataType::Single:
            test_batch_syrk_device_work< float, float >( params, run );
            break;

        case testsweeper::DataType::Double:
            test_batch_syrk_device_work< double, double >( params, run );
            break;

        case testsweeper::DataType::SingleComplex:
            test_batch_syrk_device_work< std::complex<float>, std::complex<float> >
                ( params, run );
            break;

        case testsweeper::DataType::DoubleComplex:
            test_batch_syrk_device_work< std::complex<double>, std::complex<double> >
                ( params, run );
            break;

        default:
            throw std::exception();
            break;
    }
}