1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "cblas_wrappers.hh"
#include "lapack_wrappers.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
#include "check_gemm.hh"
// -----------------------------------------------------------------------------
template <typename TX, typename TY>
void test_dot_device_work( Params& params, bool run )
{
using namespace testsweeper;
using std::real;
using std::imag;
using scalar_t = blas::scalar_type< TX, TY >;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
int64_t n = params.dim.n();
int64_t incx = params.incx();
int64_t incy = params.incy();
int64_t verbose = params.verbose();
int64_t device = params.device();
char mode = params.pointer_mode();
scalar_t result_host;
scalar_t* result = &result_host;
// mark non-standard output values
params.gflops();
params.gbytes();
params.ref_time();
params.ref_gflops();
params.ref_gbytes();
// adjust header to msec
params.time.name( "time (ms)" );
params.ref_time.name( "ref time (ms)" );
params.ref_time.width( 13 );
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// setup
size_t size_x = (n - 1) * std::abs(incx) + 1;
size_t size_y = (n - 1) * std::abs(incy) + 1;
TX* x = new TX[ size_x ];
TY* y = new TY[ size_y ];
int64_t idist = 1;
int iseed[4] = { 0, 0, 0, 1 };
lapack_larnv( idist, iseed, size_x, x );
lapack_larnv( idist, iseed, size_y, y );
// norms for error check
real_t Xnorm = cblas_nrm2( n, x, std::abs(incx) );
real_t Ynorm = cblas_nrm2( n, y, std::abs(incy) );
// device specifics
blas::Queue queue( device );
TX* dx;
TY* dy;
dx = blas::device_malloc<TX>( size_x, queue );
dy = blas::device_malloc<TY>( size_y, queue );
blas::device_copy_vector( n, x, std::abs(incx), dx, std::abs(incx), queue );
blas::device_copy_vector( n, y, std::abs(incy), dy, std::abs(incy), queue );
queue.sync();
if (mode == 'd') {
result = blas::device_malloc<scalar_t>( 1, queue );
#if defined( BLAS_HAVE_CUBLAS )
cublasSetPointerMode( queue.handle(), CUBLAS_POINTER_MODE_DEVICE );
#elif defined( BLAS_HAVE_ROCBLAS )
rocblas_set_pointer_mode( queue.handle(), rocblas_pointer_mode_device );
#endif
}
// test error exits
assert_throw( blas::dot( -1, x, incx, y, incy, result, queue ), blas::Error );
assert_throw( blas::dot( n, x, 0, y, incy, result, queue ), blas::Error );
assert_throw( blas::dot( n, x, incx, y, 0, result, queue ), blas::Error );
if (verbose >= 1) {
printf( "\n"
"x n=%5lld, inc=%5lld, size=%10lld, norm %.2e\n"
"y n=%5lld, inc=%5lld, size=%10lld, norm %.2e\n",
llong( n ), llong( incx ), llong( size_x ), Xnorm,
llong( n ), llong( incy ), llong( size_y ), Ynorm );
}
if (verbose >= 2) {
printf( "x = " ); print_vector( n, x, incx );
printf( "y = " ); print_vector( n, y, incy );
}
// run test
testsweeper::flush_cache( params.cache() );
double time = get_wtime();
blas::dot( n, dx, incx, dy, incy, result, queue );
queue.sync();
time = get_wtime() - time;
if (mode == 'd') {
device_memcpy( &result_host, result, 1, queue );
}
double gflop = blas::Gflop<scalar_t>::dot( n );
double gbyte = blas::Gbyte<scalar_t>::dot( n );
params.time() = time * 1000; // msec
params.gflops() = gflop / time;
params.gbytes() = gbyte / time;
if (verbose >= 1) {
printf( "dot = %.4e + %.4ei\n", real(result_host), imag(result_host) );
}
if (params.check() == 'y') {
// run reference
testsweeper::flush_cache( params.cache() );
time = get_wtime();
scalar_t ref = cblas_dot( n, x, incx, y, incy );
time = get_wtime() - time;
params.ref_time() = time * 1000; // msec
params.ref_gflops() = gflop / time;
params.ref_gbytes() = gbyte / time;
if (verbose >= 1) {
printf( "ref = %.4e + %.4ei\n", real(ref), imag(ref) );
}
// check error compared to reference
// treat result as 1 x 1 matrix; k = n is reduction dimension
// alpha=1, beta=0, Cnorm=0
real_t error;
bool okay;
check_gemm( 1, 1, n, scalar_t(1), scalar_t(0), Xnorm, Ynorm, real_t(0),
&ref, 1, &result_host, 1, verbose, &error, &okay );
params.error() = error;
params.okay() = okay;
}
delete[] x;
delete[] y;
blas::device_free( dx, queue );
blas::device_free( dy, queue );
if (mode == 'd')
blas::device_free( result, queue );
}
// -----------------------------------------------------------------------------
void test_dot_device( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_dot_device_work< float, float >( params, run );
break;
case testsweeper::DataType::Double:
test_dot_device_work< double, double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_dot_device_work< std::complex<float>, std::complex<float> >
( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_dot_device_work< std::complex<double>, std::complex<double> >
( params, run );
break;
default:
throw std::exception();
break;
}
}
|