1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "print_matrix.hh"
#include "lapack_wrappers.hh"
#include "blas/flops.hh"
// -----------------------------------------------------------------------------
template <typename T>
void test_memcpy_2d_work( Params& params, bool run )
{
using namespace testsweeper;
using real_t = blas::real_type<T>;
// get & mark input values
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t device = params.device();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.time2();
params.time3();
params.time4();
params.gbytes();
params.gbytes2();
params.gbytes3();
params.gbytes4();
params.ref_time();
params.ref_gbytes();
params.time .name( "h2d (sec)" );
params.time2 .name( "d2d (sec)" );
params.time3 .name( "d2h (sec)" );
params.time4 .name( "h2h (sec)" );
params.ref_time.name( "ref (sec)" );
params.gbytes .name( "h2d GB/s" );
params.gbytes2 .name( "d2d GB/s" );
params.gbytes3 .name( "d2h GB/s" );
params.gbytes4 .name( "h2h GB/s" );
params.ref_gbytes.name( "ref GB/s" );
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
enum class Method {
memcpy_2d,
copy_matrix,
set_matrix, // tests both set_matrix and get_matrix
};
Method method;
if (params.routine == "memcpy_2d") {
method = Method::memcpy_2d;
}
else if (params.routine == "copy_matrix") {
method = Method::copy_matrix;
}
else if (params.routine == "set_matrix") {
method = Method::set_matrix;
}
else {
throw blas::Error( "unknown method" );
}
// setup
blas::Queue queue( device );
// Allocate extra to verify copy doesn't overrun buffer.
int64_t ld = roundup( m, align );
int64_t extra = 2;
int64_t size = ld*(n + extra);
T* a_host = blas::host_malloc_pinned<T>( size, queue );
T* b_host = blas::host_malloc_pinned<T>( size, queue );
T* c_host = blas::host_malloc_pinned<T>( size, queue );
T* d_host = blas::host_malloc_pinned<T>( size, queue );
// device specifics
T* b_dev = blas::device_malloc<T>( size, queue );
T* c_dev = blas::device_malloc<T>( size, queue );
int64_t idist = 1;
int iseed[4] = { 0, 0, 0, 1 };
lapack_larnv( idist, iseed, size, a_host );
lapack_larnv( idist, iseed, size, b_host );
lapack_larnv( idist, iseed, size, c_host );
lapack_larnv( idist, iseed, size, d_host );
// test error exits
assert_throw( blas::device_memcpy_2d( c_dev, m-1, b_dev, m, m, n, queue ), blas::Error );
assert_throw( blas::device_memcpy_2d( c_dev, m, b_dev, m-1, m, n, queue ), blas::Error );
assert_throw( blas::device_memcpy_2d( c_dev, m, b_dev, m, -1, n, queue ), blas::Error );
assert_throw( blas::device_memcpy_2d( c_dev, m, b_dev, m, m, -1, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( -1, n, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, -1, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m-1, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m, c_dev, m-1, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( -1, n, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, -1, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m-1, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m, c_dev, m-1, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( -1, n, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, -1, b_dev, m, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m-1, c_dev, m, queue ), blas::Error );
assert_throw( blas::device_copy_matrix( m, n, b_dev, m, c_dev, m-1, queue ), blas::Error );
if (verbose >= 1) {
printf( "\n"
"m=%5lld, n=%5lld, ld=%2lld\n",
llong( m ), llong( n ), llong( ld ) );
}
if (verbose >= 2) {
printf( "a = " ); print_matrix( ld, n + extra, a_host, ld );
}
// run test
testsweeper::flush_cache( params.cache() );
//----------
// a_host -> b_dev
double time = sync_get_wtime( queue );
if (method == Method::memcpy_2d) {
blas::device_memcpy_2d( b_dev, ld, a_host, ld, m, n, queue );
}
else if (method == Method::copy_matrix) {
blas::device_copy_matrix( m, n, a_host, ld, b_dev, ld, queue );
}
else if (method == Method::set_matrix) {
blas::device_copy_matrix( m, n, a_host, ld, b_dev, ld, queue );
}
time = sync_get_wtime( queue ) - time;
//----------
// b_dev -> c_dev
double time2 = sync_get_wtime( queue );
if (method == Method::memcpy_2d) {
blas::device_memcpy_2d( c_dev, ld, b_dev, ld, m, n, queue );
}
else {
// For method = copy_matrix or set_matrix, use copy_matrix.
blas::device_copy_matrix( m, n, b_dev, ld, c_dev, ld, queue );
}
time2 = sync_get_wtime( queue ) - time2;
//----------
// c_dev -> d_host
double time3 = sync_get_wtime( queue );
if (method == Method::memcpy_2d) {
blas::device_memcpy_2d( d_host, ld, c_dev, ld, m, n, queue );
}
else if (method == Method::copy_matrix) {
blas::device_copy_matrix( m, n, c_dev, ld, d_host, ld, queue );
}
else if (method == Method::set_matrix) {
blas::device_copy_matrix( m, n, c_dev, ld, d_host, ld, queue );
}
time3 = sync_get_wtime( queue ) - time3;
//----------
// a_host -> b_host
double time4 = sync_get_wtime( queue );
if (method == Method::memcpy_2d) {
blas::device_memcpy_2d( b_host, ld, a_host, ld, m, n, queue );
}
else {
// For method = copy_matrix or set_matrix, use copy_matrix.
blas::device_copy_matrix( m, n, a_host, ld, b_host, ld, queue );
}
time4 = sync_get_wtime( queue ) - time4;
//----------
// b_host -> c_host
double ref_time = sync_get_wtime( queue );
lapack_lacpy( "g", m, n, b_host, ld, c_host, ld );
ref_time = sync_get_wtime( queue ) - ref_time;
// read m*n, write m*n
double gbyte = blas::Gbyte<T>::copy_2d( m, n );
params.time() = time;
params.time2() = time2;
params.time3() = time3;
params.time4() = time4;
params.ref_time() = ref_time;
params.gbytes() = gbyte / time;
params.gbytes2() = gbyte / time2;
params.gbytes3() = gbyte / time3;
params.gbytes4() = gbyte / time4;
params.ref_gbytes() = gbyte / ref_time;
if (verbose >= 2) {
printf( "b = " ); print_matrix( ld, n + extra, b_host, ld );
printf( "c = " ); print_matrix( ld, n + extra, c_host, ld );
printf( "d = " ); print_matrix( ld, n + extra, d_host, ld );
printf( "Note last %lld rows and last %lld cols should NOT be copied!\n",
llong( ld - m ), llong( extra ) );
}
// check error
blas::axpy( size, -1.0, a_host, 1, b_host, 1 );
blas::axpy( size, -1.0, a_host, 1, c_host, 1 );
blas::axpy( size, -1.0, a_host, 1, d_host, 1 );
real_t dummy;
real_t error = lapack_lange( "m", m, n, b_host, ld, &dummy )
+ lapack_lange( "m", m, n, c_host, ld, &dummy )
+ lapack_lange( "m", m, n, d_host, ld, &dummy );
// Entries outside sub-matrix should NOT be copied.
// For first n cols, check i = m+1 : ld.
// For extra cols, check i = 0 : ld.
for (int64_t j = 0; j < n + extra; ++j) {
for (int64_t i = (j < n ? m : 0); i < ld; ++i) {
if (a_host[ i + j*ld ] == b_host[ i + j*ld ])
error += 1;
if (a_host[ i + j*ld ] == c_host[ i + j*ld ])
error += 1;
if (a_host[ i + j*ld ] == d_host[ i + j*ld ])
error += 1;
}
}
params.error() = error;
params.okay() = (error == 0); // copy must be exact
blas::host_free_pinned( a_host, queue );
blas::host_free_pinned( b_host, queue );
blas::host_free_pinned( c_host, queue );
blas::host_free_pinned( d_host, queue );
blas::device_free( b_dev, queue );
blas::device_free( c_dev, queue );
}
// -----------------------------------------------------------------------------
void test_memcpy_2d( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_memcpy_2d_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_memcpy_2d_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_memcpy_2d_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_memcpy_2d_work< std::complex<double> >( params, run );
break;
default:
throw std::exception();
break;
}
}
|