1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "cblas_wrappers.hh"
#include "lapack_wrappers.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
// -----------------------------------------------------------------------------
template <typename Tx>
void test_nrm2_device_work( Params& params, bool run )
{
using namespace testsweeper;
using scalar_t = blas::scalar_type<Tx>;
using real_t = blas::real_type<scalar_t>;
using std::abs;
// get & mark input values
char mode = params.pointer_mode();
int64_t n = params.dim.n();
int64_t incx = params.incx();
int64_t device = params.device();
int64_t verbose = params.verbose();
real_t result_host;
real_t* result = &result_host;
real_t result_cblas;
// mark non-standard output values
params.gflops();
params.gbytes();
params.ref_time();
params.ref_gflops();
params.ref_gbytes();
// adjust header to msec
params.time.name( "time (ms)" );
params.ref_time.name( "ref time (ms)" );
params.ref_time.width( 13 );
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// setup
size_t size_x = (n - 1) * std::abs(incx) + 1;
Tx* x = new Tx[ size_x ];
Tx* xref = new Tx[ size_x ];
// device specifics
blas::Queue queue( device );
Tx* dx;
dx = blas::device_malloc<Tx>(size_x, queue);
if (mode == 'd') {
result = blas::device_malloc<real_t>(1, queue);
#if defined( BLAS_HAVE_CUBLAS )
cublasSetPointerMode(queue.handle(), CUBLAS_POINTER_MODE_DEVICE);
#elif defined( BLAS_HAVE_ROCBLAS )
rocblas_set_pointer_mode( queue.handle(), rocblas_pointer_mode_device );
#endif
}
// test error exits
assert_throw( blas::nrm2( -1, x, incx, result, queue ), blas::Error );
assert_throw( blas::nrm2( n, x, 0, result, queue ), blas::Error );
int64_t idist = 1;
int iseed[4] = { 0, 0, 0, 1 };
lapack_larnv( idist, iseed, size_x, x );
cblas_copy( n, x, incx, xref, incx );
blas::device_copy_vector(n, x, std::abs(incx), dx, std::abs(incx), queue);
queue.sync();
if (verbose >= 1) {
printf( "\n"
"n=%5lld, incx=%5lld, sizex=%10lld\n",
llong( n ), llong( incx ), llong( size_x ) );
}
if (verbose >= 2) {
printf( "x = " ); print_vector( n, x, incx );
}
// run test
testsweeper::flush_cache( params.cache() );
double time = get_wtime();
blas::nrm2( n, dx, incx, result, queue );
queue.sync();
time = get_wtime() - time;
if (mode == 'd') {
device_memcpy( &result_host, result, 1, queue );
}
double gflop = blas::Gflop< Tx >::nrm2( n );
double gbyte = blas::Gbyte< Tx >::nrm2( n );
params.time() = time * 1000; // msec
params.gflops() = gflop / time;
params.gbytes() = gbyte / time;
blas::device_copy_vector(n, dx, std::abs(incx), x, std::abs(incx), queue);
queue.sync();
if (verbose >= 2) {
printf( "x2 = " ); print_vector( n, x, incx );
}
if (params.check() == 'y') {
// run reference
testsweeper::flush_cache( params.cache() );
time = get_wtime();
result_cblas = cblas_nrm2( n, xref, incx );
time = get_wtime() - time;
params.ref_time() = time * 1000; // msec
params.ref_gflops() = gflop / time;
params.ref_gbytes() = gbyte / time;
if (verbose >= 2) {
printf( "result0 = %.2e\n", result_cblas );
}
// relative forward error:
real_t error = abs( (result_cblas - result_host)
/ (sqrt(n+1) * result_cblas) );
params.error() = error;
if (verbose >= 2) {
printf( "err = " ); print_vector( n, x, incx, "%9.2e" );
}
// complex needs extra factor; see Higham, 2002, sec. 3.6.
if (blas::is_complex<scalar_t>::value) {
error /= 2*sqrt(2);
}
real_t u = 0.5 * std::numeric_limits< real_t >::epsilon();
params.error() = error;
params.okay() = (error < u);
}
delete[] x;
delete[] xref;
blas::device_free( dx, queue );
if (mode == 'd')
blas::device_free( result, queue );
}
// -----------------------------------------------------------------------------
void test_nrm2_device( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_nrm2_device_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_nrm2_device_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_nrm2_device_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_nrm2_device_work< std::complex<double> >( params, run );
break;
default:
throw std::exception();
break;
}
}
|