1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
#include "check_gemm.hh"
//------------------------------------------------------------------------------
// Copy A from LAPACK format on host to tile format on device.
// Each tile is dimension mb-by-nb in ld_tile-by-nb array, ld_tile >= mb.
// The matrix A is mt block rows by nt block cols,
// with overall dimension mb*mt-by-nb*nt in an lda-by-nb*nt array, lda >= mb*mt.
template <typename T>
void copy_lapack_to_tile_format(
int64_t mb, int64_t nb, int64_t mt, int64_t nt,
T const* A, int64_t lda,
T* dA, int64_t ld_tile, blas::Queue& queue )
{
for (int64_t j = 0; j < nt; ++j) {
for (int64_t i = 0; i < mt; ++i) {
blas::device_copy_matrix(
mb, nb,
& A[ i*mb + j*nb*lda ], lda,
&dA[ (i + j*mt)*nb*ld_tile ], ld_tile,
queue );
}
}
}
//------------------------------------------------------------------------------
// Copy A from tile format on device to LAPACK format on host.
// See copy_lapack_to_tile_format for format.
template <typename T>
void copy_tile_to_lapack_format(
int64_t mb, int64_t nb, int64_t mt, int64_t nt,
T const* dA, int64_t ld_tile,
T* A, int64_t lda, blas::Queue& queue )
{
for (int64_t j = 0; j < nt; ++j) {
for (int64_t i = 0; i < mt; ++i) {
blas::device_copy_matrix(
mb, nb,
&dA[ (i + j*mt)*nb*ld_tile ], ld_tile,
&A[ i*mb + j*nb*lda ], lda,
queue );
}
}
}
//------------------------------------------------------------------------------
template <typename TA, typename TB, typename TC>
void test_schur_gemm_work( Params& params, bool run )
{
using namespace testsweeper;
using namespace blas::batch;
using blas::Op;
using blas::Layout;
using blas::Format;
using scalar_t = blas::scalar_type< TA, TB, TC >;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
blas::Layout layout = Layout::ColMajor; //params.layout();
blas::Format format = params.format();
blas::Op transA_ = params.transA();
blas::Op transB_ = params.transB();
scalar_t alpha_ = params.alpha.get<scalar_t>();
scalar_t beta_ = params.beta.get<scalar_t>();
int64_t m_ = params.dim.m();
int64_t n_ = params.dim.n();
int64_t k_ = params.dim.k(); // Used as the tile size nb.
int64_t device = params.device();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.gflops();
params.time2();
params.gflops2();
params.ref_time();
params.ref_gflops();
params.time .name( "batch time (s)" );
params.gflops .name( "batch gflop/s" );
params.time2 .name( "stream time (s)" );
params.gflops2.name( "stream gflop/s" );
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// Round m_ and n_ down to a multiple of k, since we are not dealing with
// cleanup of partial tiles around the edge of the matrix.
m_ = int64_t( m_ / k_ ) * k_;
n_ = int64_t( n_ / k_ ) * k_;
params.dim.m() = m_;
params.dim.n() = n_;
// setup
int64_t Am = (transA_ == Op::NoTrans ? m_ : k_);
int64_t An = (transA_ == Op::NoTrans ? k_ : m_);
int64_t Bm = (transB_ == Op::NoTrans ? k_ : n_);
int64_t Bn = (transB_ == Op::NoTrans ? n_ : k_);
int64_t Cm = m_;
int64_t Cn = n_;
// if (layout == Layout::RowMajor) {
// std::swap( Am, An );
// std::swap( Bm, Bn );
// std::swap( Cm, Cn );
// }
int64_t mt = int64_t( m_ / k_ );
int64_t nt = int64_t( n_ / k_ );
size_t batch = mt*nt;
int64_t lda_ = roundup( Am, align );
int64_t ldb_ = roundup( Bm, align );
int64_t ldc_ = roundup( Cm, align );
// ld of a tile. For now, there is
// no padding for tiles.
int64_t ld_tile = k_;
size_t size_A = size_t(lda_)*An;
size_t size_B = size_t(ldb_)*Bn;
size_t size_C = size_t(ldc_)*Cn;
TA* A = new TA[ size_A ];
TB* B = new TB[ size_B ];
TC* C = new TC[ size_C ];
TC* Cref = nullptr;
if (params.ref() == 'y' || params.check() == 'y')
Cref = new TC[ size_C ];
// device specifics
blas::Queue queue( device );
TA* dA = blas::device_malloc<TA>( size_A, queue );
TB* dB = blas::device_malloc<TB>( size_B, queue );
TC* dC = blas::device_malloc<TC>( size_C, queue );
// pointer arrays
std::vector<TA*> dAarray;
std::vector<TB*> dBarray;
std::vector<TC*> dCarray;
// wrap scalar arguments in std::vector
std::vector<blas::Op> transA( 1, transA_ );
std::vector<blas::Op> transB( 1, transB_ );
std::vector<int64_t> k( 1, k_ );
int64_t lda_batch = lda_;
int64_t ldb_batch = ldb_;
int64_t ldc_batch = ldc_;
if (format == Format::Tile) {
lda_batch = ld_tile;
ldb_batch = ld_tile;
ldc_batch = ld_tile;
}
std::vector<int64_t> ldda( 1, lda_batch );
std::vector<int64_t> lddb( 1, ldb_batch );
std::vector<int64_t> lddc( 1, ldc_batch );
std::vector<scalar_t> alpha( 1, alpha_ );
std::vector<scalar_t> beta( 1, beta_ );
int64_t idist = 1;
int iseed[4] = { 0, 0, 0, 1 };
lapack_larnv( idist, iseed, size_A, A );
lapack_larnv( idist, iseed, size_B, B );
lapack_larnv( idist, iseed, size_C, C );
if (Cref != nullptr)
lapack_lacpy( "g", Cm, Cn, C, ldc_, Cref, ldc_ );
if (format == Format::LAPACK) {
blas::device_copy_matrix( Am, An, A, lda_, dA, lda_, queue );
blas::device_copy_matrix( Bm, Bn, B, ldb_, dB, ldb_, queue );
blas::device_copy_matrix( Cm, Cn, C, ldc_, dC, ldc_, queue );
}
else if (format == Format::Tile) {
copy_lapack_to_tile_format(
k_, k_, Am/k_, An/k_, A, lda_, dA, ld_tile, queue );
copy_lapack_to_tile_format(
k_, k_, Bm/k_, Bn/k_, B, ldb_, dB, ld_tile, queue );
copy_lapack_to_tile_format(
k_, k_, mt, nt, C, ldc_, dC, ld_tile, queue );
}
queue.sync();
// norms for error check
real_t work[1];
real_t Anorm = lapack_lange( "f", Am, An, A, lda_, work );
real_t Bnorm = lapack_lange( "f", Bm, Bn, B, ldb_, work );
real_t Cnorm = lapack_lange( "f", Cm, Cn, C, ldc_, work );
// Construct dAarray, dBarray, dCarray (on host) with pointers to
// tiles in dA, dB, dC.
double time_with_setup = get_wtime();
if (format == Format::LAPACK) {
for (int64_t j = 0; j < nt; ++j) {
for (int64_t i = 0; i < mt; ++i) {
if (transA_ == Op::NoTrans)
dAarray.push_back( &dA[ i*k_ ] ); // i-th block row
else
dAarray.push_back( &dA[ i*k_*lda_ ] ); // i-th block col
if (transB_ == Op::NoTrans)
dBarray.push_back( &dB[ j*k_*ldb_ ] ); // j-th block col
else
dBarray.push_back( &dB[ j*k_ ] ); // j-th block row
dCarray.push_back( &dC[ i*k_ + j*k_*ldc_ ] ); // (i, j)-th block
}
}
}
else if (format == Format::Tile) {
for (int64_t j = 0; j < nt; ++j) {
for (int64_t i = 0; i < mt; ++i) {
dAarray.push_back( &dA[ i*k_*ld_tile ] ); // i-th tile
dBarray.push_back( &dB[ j*k_*ld_tile ] ); // j-th tile
dCarray.push_back( &dC[ (i + j*mt)*k_*ld_tile ] ); // (i, j)-th tile
}
}
}
//----------------------------------------
// Run batch test.
// todo: warm up queue for batch.
testsweeper::flush_cache( params.cache() );
std::vector<int64_t> info; // empty info vector (no checks)
double time = get_wtime();
blas::batch::gemm( layout, transA, transB, k, k, k, alpha, dAarray, ldda,
dBarray, lddb, beta, dCarray, lddc, batch, info, queue );
queue.sync();
double t = get_wtime();
time_with_setup = t - time_with_setup;
time = t - time;
double gflop = blas::Gflop< scalar_t >::gemm( m_, n_, k_ );
params.time() = time;
params.gflops() = gflop / time;
if (format == Format::LAPACK) {
blas::device_copy_matrix( Cm, Cn, dC, ldc_, C, ldc_, queue );
}
else if (format == Format::Tile) {
copy_tile_to_lapack_format(
k_, k_, mt, nt, dC, ld_tile, C, ldc_, queue );
}
queue.sync();
//----------------------------------------
// Run multi-stream test.
// todo: warm up queue for streams.
testsweeper::flush_cache( params.cache() );
time = get_wtime();
queue.fork();
for (size_t i = 0; i < dCarray.size(); ++i) {
blas::gemm( layout, transA_, transB_, k_, k_, k_,
alpha_, dAarray[ i ], lda_batch,
dBarray[ i ], ldb_batch,
beta_, dCarray[ i ], ldc_batch, queue );
queue.revolve();
}
queue.join();
queue.sync();
time = get_wtime() - time;
params.time2() = time;
params.gflops2() = gflop / time;
// todo: copy & check multi-stream result.
if (params.ref() == 'y' || params.check() == 'y') {
testsweeper::flush_cache( params.cache() );
if (format == Format::Tile) {
// Copy A and B to device in LAPACK format.
blas::device_copy_matrix( Am, An, A, lda_, dA, lda_, queue );
blas::device_copy_matrix( Bm, Bn, B, ldb_, dB, ldb_, queue );
}
blas::device_copy_matrix( Cm, Cn, Cref, ldc_, dC, ldc_, queue );
queue.sync();
//----------------------------------------
// Run reference
double time_ref = get_wtime();
blas::gemm( layout, transA_, transB_, m_, n_, k_,
alpha_, dA, lda_, dB, ldb_,
beta_, dC, ldc_, queue );
queue.sync();
time_ref = get_wtime() - time_ref;
params.ref_time() = time_ref;
params.ref_gflops() = gflop / time_ref;
blas::device_copy_matrix( Cm, Cn, dC, ldc_, Cref, ldc_, queue );
queue.sync();
// Error
real_t error;
bool okay;
check_gemm( Cm, Cn, k_, alpha_, beta_, Anorm, Bnorm, Cnorm,
Cref, ldc_, C, ldc_, verbose, &error, &okay );
params.error() = error;
params.okay() = okay;
delete[] Cref;
}
delete[] A;
delete[] B;
delete[] C;
blas::device_free( dA, queue );
blas::device_free( dB, queue );
blas::device_free( dC, queue );
}
// -----------------------------------------------------------------------------
void test_schur_gemm( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_schur_gemm_work< float, float, float >( params, run );
break;
case testsweeper::DataType::Double:
test_schur_gemm_work< double, double, double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_schur_gemm_work< std::complex<float>, std::complex<float>,
std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_schur_gemm_work< std::complex<double>, std::complex<double>,
std::complex<double> >( params, run );
break;
default:
throw std::exception();
break;
}
}
|