File: BlasrAlignImpl.hpp

package info (click to toggle)
blasr 5.3.5%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,196 kB
  • sloc: cpp: 8,412; ansic: 806; python: 331; sh: 178; java: 158; makefile: 36
file content (1591 lines) | stat: -rw-r--r-- 75,535 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
// Author: Mark Chaisson
#pragma once

#include "BlasrUtils.hpp"

template <typename T_Sequence, typename T_RefSequence, typename T_SuffixArray,
          typename T_TupleCountTable>
void MapRead(T_Sequence &read, T_Sequence &readRC, T_RefSequence &genome, T_SuffixArray &sarray,
             BWT &bwt, SeqBoundaryFtr<FASTQSequence> &seqBoundary, T_TupleCountTable &ct,
             SequenceIndexDatabase<FASTQSequence> &seqdb, MappingParameters &params,
             MappingMetrics &metrics, std::vector<T_AlignmentCandidate *> &alignmentPtrs,
             MappingBuffers &mappingBuffers, MappingIPC *mapData, MappingSemaphores &semaphores)
{
    bool matchFound;
    WeightedIntervalSet topIntervals(params.nCandidates);
    int numKeysMatched = 0, rcNumKeysMatched = 0;
    (void)(numKeysMatched);
    (void)(rcNumKeysMatched);
    int expand = params.minExpand;
    metrics.clocks.total.Tick();
    int forwardNumBasesMatched = 0, reverseNumBasesMatched = 0;
    do {
        matchFound = false;
        mappingBuffers.matchPosList.clear();
        mappingBuffers.rcMatchPosList.clear();
        alignmentPtrs.clear();
        topIntervals.clear();
        params.anchorParameters.expand = expand;

        metrics.clocks.mapToGenome.Tick();

        if (params.useSuffixArray) {
            params.anchorParameters.lcpBoundsOutPtr = mapData->lcpBoundsOutPtr;
            numKeysMatched = MapReadToGenome(genome, sarray, read, params.lookupTableLength,
                                             mappingBuffers.matchPosList, params.anchorParameters);

            //
            // Only print values for the read in forward direction (and only
            // the first read).
            //
            mapData->lcpBoundsOutPtr = NULL;
            if (!params.forwardOnly) {
                rcNumKeysMatched =
                    MapReadToGenome(genome, sarray, readRC, params.lookupTableLength,
                                    mappingBuffers.rcMatchPosList, params.anchorParameters);
            }
        } else if (params.useBwt) {
            numKeysMatched = MapReadToGenome(bwt, read, read.SubreadStart(), read.SubreadEnd(),
                                             mappingBuffers.matchPosList, params.anchorParameters,
                                             forwardNumBasesMatched);
            if (!params.forwardOnly) {
                rcNumKeysMatched = MapReadToGenome(
                    bwt, readRC, readRC.SubreadStart(), readRC.SubreadEnd(),
                    mappingBuffers.rcMatchPosList, params.anchorParameters, reverseNumBasesMatched);
            }
        }

        //
        // Look to see if only the anchors are printed.
        if (params.anchorFileName != "") {
            size_t i;
            if (params.nProc > 1) {
#ifdef __APPLE__
                sem_wait(semaphores.writer);
#else
                sem_wait(&semaphores.writer);
#endif
            }
            *mapData->anchorFilePtr << read.title << std::endl;
            for (i = 0; i < mappingBuffers.matchPosList.size(); i++) {
                *mapData->anchorFilePtr << mappingBuffers.matchPosList[i] << std::endl;
            }
            *mapData->anchorFilePtr << readRC.title << " (RC) " << std::endl;
            for (i = 0; i < mappingBuffers.rcMatchPosList.size(); i++) {
                *mapData->anchorFilePtr << mappingBuffers.rcMatchPosList[i] << std::endl;
            }

            if (params.nProc > 1) {
#ifdef __APPLE__
                sem_post(semaphores.writer);
#else
                sem_post(&semaphores.writer);
#endif
            }
        }

        metrics.totalAnchors +=
            mappingBuffers.matchPosList.size() + mappingBuffers.rcMatchPosList.size();
        metrics.clocks.mapToGenome.Tock();

        metrics.clocks.sortMatchPosList.Tick();
        SortMatchPosList(mappingBuffers.matchPosList);
        SortMatchPosList(mappingBuffers.rcMatchPosList);
        metrics.clocks.sortMatchPosList.Tock();

        PValueWeightor lisPValue(read, genome, ct.tm, &ct);
        MultiplicityPValueWeightor lisPValueByWeight(genome);

        LISSumOfLogPWeightor<T_GenomeSequence, std::vector<ChainedMatchPos> > lisPValueByLogSum(
            genome);

        LISSizeWeightor<std::vector<ChainedMatchPos> > lisWeightFn;

        IntervalSearchParameters intervalSearchParameters;
        intervalSearchParameters.globalChainType = params.globalChainType;
        intervalSearchParameters.advanceHalf = params.advanceHalf;
        intervalSearchParameters.warp = params.warp;
        intervalSearchParameters.fastMaxInterval = params.fastMaxInterval;
        intervalSearchParameters.aggressiveIntervalCut = params.aggressiveIntervalCut;
        intervalSearchParameters.verbosity = params.verbosity;

        //
        // If specified, only align a band from the anchors.
        //
        DNALength squareRefLength = read.length * 1.25 + params.limsAlign;
        if (params.limsAlign != 0) {
            size_t fi;
            for (fi = 0; fi < mappingBuffers.matchPosList.size(); fi++) {
                if (mappingBuffers.matchPosList[fi].t >= squareRefLength) {
                    break;
                }
            }
            if (fi < mappingBuffers.matchPosList.size()) {
                mappingBuffers.matchPosList.resize(fi);
            }
        }

        metrics.clocks.findMaxIncreasingInterval.Tick();

        //
        // For now say that something that has a 50% chance of happening
        // by chance is too high of a p value. This is probably many times
        // the size.
        //
        intervalSearchParameters.maxPValue = log(0.5);
        intervalSearchParameters.aboveCategoryPValue = -300;
        VarianceAccumulator<float> accumPValue;
        VarianceAccumulator<float> accumWeight;
        VarianceAccumulator<float> accumNBases;

        mappingBuffers.clusterList.Clear();
        mappingBuffers.revStrandClusterList.Clear();

        //
        // Remove anchors that are fully encompassed by longer ones.  This
        // speeds up limstemplate a lot.
        //

        RemoveOverlappingAnchors(mappingBuffers.matchPosList);
        RemoveOverlappingAnchors(mappingBuffers.rcMatchPosList);

        if (params.pValueType == 0) {
            if (params.printDotPlots) {
                std::ofstream dotPlotOut;
                std::string dotPlotName = std::string(read.title) + ".anchors";
                CrucialOpen(dotPlotName, dotPlotOut, std::ios::out);
                for (size_t mp = 0; mp < mappingBuffers.matchPosList.size(); mp++) {
                    dotPlotOut << mappingBuffers.matchPosList[mp].q << " "
                               << mappingBuffers.matchPosList[mp].t << " "
                               << mappingBuffers.matchPosList[mp].l << " " << std::endl;
                }
                dotPlotOut.close();
            }
            /*
               This is an optimization that is being tested out that places a grid over the
               area where there are anchors, and then finds an increasing maximally weighted
               path through the grid.  The weight of a cell in the grid is the sum of the
               number of anchors in it.  All other anchors are to be removed.  This will likely
               only work for LIMSTemplate sequences, or other sequences with little structural
               variation.
               FindBand(mappingBuffers.matchPosList,
               refCopy, read, 100);
               */
            FindMaxIncreasingInterval(
                Forward, mappingBuffers.matchPosList,
                // allow for indels to stretch out the mapping of the read.
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValue,  //lisPValue2,
                lisWeightFn, topIntervals, genome, read, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.clusterList, accumPValue,
                accumWeight, accumNBases);
            // Uncomment when the version of the weight functor needs the sequence.

            mappingBuffers.clusterList.ResetCoordinates();

            FindMaxIncreasingInterval(
                Reverse, mappingBuffers.rcMatchPosList,
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValue,  //lisPValue2
                lisWeightFn, topIntervals, genome, readRC, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.revStrandClusterList,
                accumPValue, accumWeight, accumNBases);
        } else if (params.pValueType == 1) {
            FindMaxIncreasingInterval(
                Forward, mappingBuffers.matchPosList,
                // allow for indels to stretch out the mapping of the read.
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValueByWeight,  // different from pvaltype == 2 and 0
                lisWeightFn, topIntervals, genome, read, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.clusterList, accumPValue,
                accumWeight, accumNBases);

            mappingBuffers.clusterList.ResetCoordinates();
            FindMaxIncreasingInterval(
                Reverse, mappingBuffers.rcMatchPosList,
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValueByWeight,  // different from pvaltype == 2 and 0
                lisWeightFn, topIntervals, genome, readRC, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.revStrandClusterList,
                accumPValue, accumWeight, accumNBases);
        } else if (params.pValueType == 2) {
            FindMaxIncreasingInterval(
                Forward, mappingBuffers.matchPosList,
                // allow for indels to stretch out the mapping of the read.
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValueByLogSum,  // different from pvaltype == 1 and 0
                lisWeightFn, topIntervals, genome, read, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.clusterList, accumPValue,
                accumWeight, accumNBases);

            mappingBuffers.clusterList.ResetCoordinates();
            FindMaxIncreasingInterval(
                Reverse, mappingBuffers.rcMatchPosList,
                (DNALength)((read.SubreadLength()) * (1 + params.indelRate)), params.nCandidates,
                seqBoundary,
                lisPValueByLogSum,  // different from pvaltype == 1 and 0
                lisWeightFn, topIntervals, genome, readRC, intervalSearchParameters,
                &mappingBuffers.globalChainEndpointBuffer, mappingBuffers.revStrandClusterList,
                accumPValue, accumWeight, accumNBases);
        }

        mappingBuffers.clusterList.numBases.insert(
            mappingBuffers.clusterList.numBases.end(),
            mappingBuffers.revStrandClusterList.numBases.begin(),
            mappingBuffers.revStrandClusterList.numBases.end());

        mappingBuffers.clusterList.numAnchors.insert(
            mappingBuffers.clusterList.numAnchors.end(),
            mappingBuffers.revStrandClusterList.numAnchors.begin(),
            mappingBuffers.revStrandClusterList.numAnchors.end());

        metrics.clocks.findMaxIncreasingInterval.Tock();

        //
        // Print verbose output.
        //
        WeightedIntervalSet::iterator topIntIt, topIntEnd;
        topIntEnd = topIntervals.end();
        if (params.verbosity > 0) {
            int topintind = 0;
            std::cout << "Top " << topIntervals.size() << " Intervals" << std::endl;
            for (topIntIt = topIntervals.begin(); topIntIt != topIntEnd; ++topIntIt) {
                std::cout << "top interval " << topintind << ", " << (*topIntIt) << std::endl;
                if (params.verbosity > 2) {
                    for (size_t m = 0; m < (*topIntIt).matches.size(); m++) {
                        std::cout << " (" << (*topIntIt).matches[m].q << ", "
                                  << (*topIntIt).matches[m].t << ", " << (*topIntIt).matches[m].l
                                  << ") ";
                    }
                    std::cout << std::endl;
                }
                ++topintind;
            }
        }

        //
        // Allocate candidate alignments on the stack.  Each interval is aligned.
        //
        alignmentPtrs.resize(topIntervals.size());
        UInt i;
        for (i = 0; i < alignmentPtrs.size(); i++) {
            alignmentPtrs[i] = new T_AlignmentCandidate;
        }
        metrics.clocks.alignIntervals.Tick();
        AlignIntervals(genome, read, readRC, topIntervals, SMRTDistanceMatrix, params.indel,
                       params.indel, params.sdpTupleSize, params.useSeqDB, seqdb, alignmentPtrs,
                       params, mappingBuffers, params.startRead);

        /*    std::cout << read.title << std::endl;
              for (i = 0; i < alignmentPtrs.size(); i++) {
              std::cout << alignmentPtrs[i]->clusterScore << " " << alignmentPtrs[i]->score << std::endl;
              }
              */
        StoreRankingStats(alignmentPtrs, accumPValue, accumWeight);

        std::sort(alignmentPtrs.begin(), alignmentPtrs.end(), SortAlignmentPointersByScore());
        metrics.clocks.alignIntervals.Tock();

        //
        // Evalutate the matches that are found for 'good enough'.
        //

        matchFound = CheckForSufficientMatch(read, alignmentPtrs, params);

        //
        // When no proper alignments are found, the loop will resume.
        // Delete all alignments because they are bad.
        //
        if (expand < params.maxExpand and matchFound == false) {
            DeleteAlignments(alignmentPtrs, 0);
        }

        //
        // Record some metrics that show how long this took to run per base.
        //

        if (alignmentPtrs.size() > 0) {
            metrics.RecordNumAlignedBases(read.length);
            metrics.RecordNumCells(alignmentPtrs[0]->nCells);
        }

        if (matchFound == true) {
            metrics.totalAnchorsForMappedReads +=
                mappingBuffers.matchPosList.size() + mappingBuffers.rcMatchPosList.size();
        }
        ++expand;
    } while (expand <= params.maxExpand and matchFound == false);
    metrics.clocks.total.Tock();
    UInt i;
    int totalCells = 0;
    for (i = 0; i < alignmentPtrs.size(); i++) {
        totalCells += alignmentPtrs[i]->nCells;
    }
    metrics.clocks.AddCells(totalCells);
    int totalBases = 0;
    for (i = 0; i < alignmentPtrs.size(); i++) {
        totalBases += alignmentPtrs[i]->qLength;
    }
    metrics.clocks.AddBases(totalBases);
    //
    //  Some of the alignments are to spurious regions. Delete the
    //  references that have too small of a score.
    //

    int effectiveReadLength = 0;
    for (i = 0; i < read.length; i++) {
        if (read.seq[i] != 'N') effectiveReadLength++;
    }
    if (params.sdpFilterType == 0) {
        RemoveLowQualityAlignments(read, alignmentPtrs, params);
    } else if (params.sdpFilterType == 1) {
        RemoveLowQualitySDPAlignments(effectiveReadLength, alignmentPtrs, params);
    }

    //
    // Now remove overlapping alignments.
    //

    std::vector<T_Sequence *> bothQueryStrands;
    bothQueryStrands.resize(2);
    bothQueryStrands[Forward] = &read;
    bothQueryStrands[Reverse] = &readRC;

    //
    // Possibly use banded dynamic programming to refine the columns
    // of an alignment and the alignment score.
    //
    if (params.refineAlignments) {
        RefineAlignments(bothQueryStrands, genome, alignmentPtrs, params, mappingBuffers);
        RemoveLowQualityAlignments(read, alignmentPtrs, params);
        RemoveOverlappingAlignments(alignmentPtrs, params);
    }

    //
    // Look to see if the number of anchors found for this read match
    // what is expected given the expected distribution of number of
    // anchors.
    //

    if (alignmentPtrs.size() > 0) {
        size_t clusterIndex;
        //
        // Compute some stats on the read.  For now this is fixed but will
        // be updated on the fly soon.
        //
        float meanAnchorBasesPerRead, sdAnchorBasesPerRead;
        float meanAnchorsPerRead, sdAnchorsPerRead;

        int lookupValue;
        //
        // If a very short anchor size was used, or very long min match
        // size there may be no precomputed distributions for it.
        // Handle this by bounding the min match by the smallest and
        // largest values for which there are precomputed statistics.

        int boundedMinWordMatchLength = std::min(
            std::max(params.minMatchLength, PacBio::AnchorDistributionTable::anchorMinKValues[0]),
            PacBio::AnchorDistributionTable::anchorMinKValues[1]);

        //
        // Do a similar bounding for match length and accuracy.
        //
        int boundedMatchLength =
            std::min(std::max((int)alignmentPtrs[0]->qAlignedSeq.length,
                              PacBio::AnchorDistributionTable::anchorReadLengths[0]),
                     PacBio::AnchorDistributionTable::anchorReadLengths[1]);
        int boundedPctSimilarity =
            std::min(std::max((int)alignmentPtrs[0]->pctSimilarity,
                              PacBio::AnchorDistributionTable::anchorReadAccuracies[0]),
                     PacBio::AnchorDistributionTable::anchorReadAccuracies[1]);

        lookupValue = LookupAnchorDistribution(
            boundedMatchLength, boundedMinWordMatchLength, boundedPctSimilarity, meanAnchorsPerRead,
            sdAnchorsPerRead, meanAnchorBasesPerRead, sdAnchorBasesPerRead);

        float minExpAnchors = meanAnchorsPerRead - sdAnchorsPerRead;
        //
        // The number of standard deviations is just trial and error.
        float minExpAnchorBases = meanAnchorBasesPerRead - 2 * sdAnchorBasesPerRead;
        if (lookupValue < 0 or minExpAnchorBases < 0) {
            minExpAnchorBases = 0;
        }
        int numSignificantClusters = 0;
        int totalSignificantClusterSize = 0;
        int maxClusterSize = 0;
        int numAlnAnchorBases, numAlnAnchors;
        alignmentPtrs[0]->ComputeNumAnchors(boundedMinWordMatchLength, numAlnAnchors,
                                            numAlnAnchorBases);
        int totalAnchorBases = 0;
        if (numAlnAnchorBases > meanAnchorBasesPerRead + sdAnchorBasesPerRead) {
            numSignificantClusters = 1;
        } else {
            if (alignmentPtrs[0]->score < params.maxScore) {
                for (clusterIndex = 0; clusterIndex < mappingBuffers.clusterList.numBases.size();
                     clusterIndex++) {
                    if (mappingBuffers.clusterList.numBases[clusterIndex] > maxClusterSize) {
                        maxClusterSize = mappingBuffers.clusterList.numBases[clusterIndex];
                    }
                }
                int scaledExpectedClusterSize =
                    maxClusterSize / ((float)numAlnAnchorBases) * minExpAnchorBases;
                for (clusterIndex = 0; clusterIndex < mappingBuffers.clusterList.numBases.size();
                     clusterIndex++) {
                    if (mappingBuffers.clusterList.numBases[clusterIndex] >=
                        scaledExpectedClusterSize) {
                        //          std::cout << mappingBuffers.clusterList.numBases[clusterIndex] << " " << scaledExpectedClusterSize << " " << meanAnchorBasesPerRead << " " << sdAnchorBasesPerRead << std::endl;
                        ++numSignificantClusters;
                        totalSignificantClusterSize += meanAnchorBasesPerRead;
                    }
                    //
                    // The following output block is useful in debugging mapqv
                    // calculation.   It should be uncommented and examined when
                    // mapqvs do not look correct.
                    //
                    totalAnchorBases += mappingBuffers.clusterList.numBases[clusterIndex];
                }
            }

            if (lookupValue == 0) {
                alignmentPtrs[0]->ComputeNumAnchors(params.minMatchLength, numAlnAnchors,
                                                    numAlnAnchorBases);
            }
        }

        for (i = 0; i < alignmentPtrs.size(); i++) {
            alignmentPtrs[i]->numSignificantClusters = numSignificantClusters;
        }
        if (mapData->clusterFilePtr != NULL and topIntervals.size() > 0 and
            alignmentPtrs.size() > 0) {
            WeightedIntervalSet::iterator intvIt = topIntervals.begin();
            if (params.nProc > 1) {
#ifdef __APPLE__
                sem_wait(semaphores.hitCluster);
#else
                sem_wait(&semaphores.hitCluster);
#endif
            }

            *mapData->clusterFilePtr
                << (*intvIt).size << " " << (*intvIt).pValue << " " << (*intvIt).nAnchors << " "
                << read.length << " " << alignmentPtrs[0]->score << " "
                << alignmentPtrs[0]->pctSimilarity << " "
                << " " << minExpAnchors << " " << alignmentPtrs[0]->qAlignedSeq.length << std::endl;

            if (params.nProc > 1) {
#ifdef __APPLE__
                sem_post(semaphores.hitCluster);
#else
                sem_post(&semaphores.hitCluster);
#endif
            }
        }
    }

    //
    // Assign the query name and strand for each alignment.
    //

    for (i = 0; i < alignmentPtrs.size(); i++) {
        T_AlignmentCandidate *aref = alignmentPtrs[i];
        if (aref->tStrand == 0) {
            aref->qName = read.GetName();
        } else {
            aref->qName = readRC.GetName();
        }
    }

    AssignRefContigLocations(alignmentPtrs, seqdb, genome);
}

template <typename T_Sequence>
void MapRead(T_Sequence &read, T_Sequence &readRC,
             std::vector<T_AlignmentCandidate *> &alignmentPtrs, MappingBuffers &mappingBuffers,
             MappingIPC *mapData, MappingSemaphores &semaphores)
{
    DNASuffixArray sarray;
    TupleCountTable<T_GenomeSequence, DNATuple> ct;
    SequenceIndexDatabase<FASTQSequence> seqdb;
    T_GenomeSequence genome;
    BWT *bwtPtr = mapData->bwtPtr;
    mapData->ShallowCopySuffixArray(sarray);
    mapData->ShallowCopyReferenceSequence(genome);
    mapData->ShallowCopySequenceIndexDatabase(seqdb);
    mapData->ShallowCopyTupleCountTable(ct);
    SeqBoundaryFtr<FASTQSequence> seqBoundary(&seqdb);

    return MapRead(read, readRC,
                   genome,           // possibly multi fasta file read into one sequence
                   sarray, *bwtPtr,  // The suffix array, and the bwt-fm index structures
                   seqBoundary,      // Boundaries of contigs in the
                   // genome, alignments do not span
                   // the ends of boundaries.
                   ct,     // Count table to use word frequencies in the genome to weight matches.
                   seqdb,  // Information about the names of
                   // chromosomes in the genome, and
                   // where their sequences are in the genome.
                   mapData->params,  // A huge list of parameters for
                   // mapping, only compile/command
                   // line values set.
                   mapData->metrics,  // Keep track of time/ hit counts,
                   // etc.. Not fully developed, but
                   // should be.
                   alignmentPtrs,   // Where the results are stored.
                   mappingBuffers,  // A class of buffers for structurs
                   // like dyanmic programming
                   // matrices, match lists, etc., that are not
                   // reallocated between calls to
                   // MapRead.  They are cleared though.
                   mapData,  // Some values that are shared
                   // across threads.
                   semaphores);
}

template <typename T_TargetSequence, typename T_QuerySequence, typename TDBSequence>
void AlignIntervals(T_TargetSequence &genome, T_QuerySequence &read, T_QuerySequence &rcRead,
                    WeightedIntervalSet &weightedIntervals, int mutationCostMatrix[][5], int ins,
                    int del, int sdpTupleSize, int useSeqDB,
                    SequenceIndexDatabase<TDBSequence> &seqDB,
                    std::vector<T_AlignmentCandidate *> &alignments, MappingParameters &params,
                    MappingBuffers &mappingBuffers, int procId)
{
    (void)(mutationCostMatrix);
    (void)(ins);
    (void)(del);
    (void)(procId);

    std::vector<T_QuerySequence *> forrev;
    forrev.resize(2);
    forrev[Forward] = &read;
    forrev[Reverse] = &rcRead;

    //
    // Use an edit distance scoring function instead of IDS.  Although
    // the IDS should be more accurate, it is more slow, and it is more
    // important at this stage to have faster alignments than accurate,
    // since all alignments are rerun using GuidedAlignment later on.
    //
    DistanceMatrixScoreFunction<DNASequence, FASTQSequence> distScoreFn(
        SMRTDistanceMatrix, params.insertion, params.deletion);
    DistanceMatrixScoreFunction<DNASequence, FASTQSequence> distScoreFn2(SMRTDistanceMatrix, ins,
                                                                         ins);

    //
    // Assume there is at least one interval.
    //
    if (weightedIntervals.size() == 0) return;

    WeightedIntervalSet::iterator intvIt = weightedIntervals.begin();
    int alignmentIndex = 0;

    do {

        T_AlignmentCandidate *alignment = alignments[alignmentIndex];
        alignment->clusterWeight = (*intvIt).size;  // totalAnchorSize == size
        alignment->clusterScore = (*intvIt).pValue;

        //
        // Advance references.  Intervals are stored in reverse order, so
        // go backwards in the list, and alignments are in forward order.
        // That should probably be changed.
        //
        ++alignmentIndex;

        //
        // Try aligning the read to the genome.
        //
        DNALength matchIntervalStart, matchIntervalEnd;
        matchIntervalStart = (*intvIt).start;
        matchIntervalEnd = (*intvIt).end;
        bool readOverlapsContigStart = false;
        bool readOverlapsContigEnd = false;
        int startOverlappedContigIndex = 0;
        int endOverlappedContigIndex = 0;
        (void)(readOverlapsContigStart);
        (void)(readOverlapsContigEnd);
        (void)(startOverlappedContigIndex);
        (void)(endOverlappedContigIndex);

        if (params.verbosity > 0) {
            std::cout << "aligning interval: "
                      << "read_length=" << read.length << "; interval=" << (*intvIt)
                      << "; max_insertion_rate=" << params.approximateMaxInsertionRate << std::endl;
        }
        assert(matchIntervalEnd >= matchIntervalStart);

        //
        // If using a sequence database, check to make sure that the
        // boundaries of the sequence windows do not overlap with
        // the boundaries of the reads.  If the beginning is before
        // the boundary, move the beginning up to the start of the read.
        // If the end is past the end boundary of the read, similarly move
        // the window boundary to the end of the read boundary.

        int seqDBIndex = 0;

        //
        // Stretch the alignment interval so that it is close to where
        // the read actually starts.
        //
        DNALength subreadStart = read.SubreadStart();
        DNALength subreadEnd = read.SubreadEnd();
        if ((*intvIt).GetStrandIndex() == Reverse) {
            subreadEnd = read.MakeRCCoordinate(read.SubreadStart()) + 1;
            subreadStart = read.MakeRCCoordinate(read.SubreadEnd() - 1);
        }

        DNALength lengthBeforeFirstMatch =
            ((*intvIt).qStart - subreadStart) * params.approximateMaxInsertionRate;
        DNALength lengthAfterLastMatch =
            (subreadEnd - (*intvIt).qEnd) * params.approximateMaxInsertionRate;
        if (matchIntervalStart < lengthBeforeFirstMatch or params.doGlobalAlignment) {
            matchIntervalStart = 0;
        } else {
            matchIntervalStart -= lengthBeforeFirstMatch;
        }

        if (genome.length < matchIntervalEnd + lengthAfterLastMatch or params.doGlobalAlignment) {
            matchIntervalEnd = genome.length;
        } else {
            matchIntervalEnd += lengthAfterLastMatch;
        }

        DNALength intervalContigStartPos, intervalContigEndPos;
        if (useSeqDB) {
            //
            // The sequence db index is the one where the actual match is
            // contained. The matchIntervalStart might be before the sequence
            // index boundary due to the extrapolation of alignment start by
            // insertion rate.  If this is the case, bump up the
            // matchIntervalStart to be at the beginning of the boundary.
            // Modify bounds similarly for the matchIntervalEnd and the end
            // of a boundary.
            //
            seqDBIndex = seqDB.SearchForIndex((*intvIt).start);
            intervalContigStartPos = seqDB.seqStartPos[seqDBIndex];
            if (intervalContigStartPos > matchIntervalStart) {
                matchIntervalStart = intervalContigStartPos;
            }
            intervalContigEndPos = seqDB.seqStartPos[seqDBIndex + 1] - 1;
            if (intervalContigEndPos < matchIntervalEnd) {
                matchIntervalEnd = intervalContigEndPos;
            }
            alignment->tName = seqDB.GetSpaceDelimitedName(seqDBIndex);
            alignment->tLength = intervalContigEndPos - intervalContigStartPos;
            //
            // When there are multiple sequences in the database, store the
            // index of this sequence.  This lets one compare the contigs
            // that reads are mapped to, for instance.
            //
            alignment->tIndex = seqDBIndex;
        } else {
            alignment->tLength = genome.length;
            alignment->tName = genome.GetName();
            intervalContigStartPos = 0;
            intervalContigEndPos = genome.length;
            //
            // When there are multiple sequences in the database, store the
            // index of this sequence.  This lets one compare the contigs
            // that reads are mapped to, for instance.
            //
        }
        alignment->qName = read.title;
        //
        // Look to see if a read overhangs the beginning of a contig.
        //
        if (params.verbosity > 2) {
            std::cout << "Check for prefix/suffix overlap on interval: " << (*intvIt).qStart
                      << " ?> " << (*intvIt).start - intervalContigStartPos << std::endl;
        }
        if ((*intvIt).qStart > (*intvIt).start - intervalContigStartPos) {
            readOverlapsContigStart = true;
            startOverlappedContigIndex = seqDBIndex;
        }

        //
        // Look to see if the read overhangs the end of a contig.
        //
        if (params.verbosity > 2) {
            std::cout << "Check for suffix/prefix overlap on interval, read overhang: "
                      << read.length - (*intvIt).qEnd << " ?> " << matchIntervalEnd - (*intvIt).end
                      << std::endl;
        }
        if (read.length - (*intvIt).qEnd > matchIntervalEnd - (*intvIt).end) {
            if (params.verbosity > 2) {
                std::cout << "read overlaps genome end." << std::endl;
            }
            readOverlapsContigEnd = true;
            endOverlappedContigIndex = seqDBIndex;
        }
        int alignScore;
        alignScore = 0;

        alignment->tAlignedSeqPos = matchIntervalStart;
        alignment->tAlignedSeqLength = matchIntervalEnd - matchIntervalStart;
        if ((*intvIt).GetStrandIndex() == Forward) {
            alignment->tAlignedSeq.Copy(genome, alignment->tAlignedSeqPos,
                                        alignment->tAlignedSeqLength);
            alignment->tStrand = Forward;
        } else {
            if (not params.placeGapConsistently) {
                DNALength rcAlignedSeqPos = genome.MakeRCCoordinate(
                    alignment->tAlignedSeqPos + alignment->tAlignedSeqLength - 1);
                genome.CopyAsRC(alignment->tAlignedSeq, rcAlignedSeqPos,
                                alignment->tAlignedSeqLength);
                // Map forward coordinates into reverse complement.

                intervalContigStartPos = genome.MakeRCCoordinate(intervalContigStartPos) + 1;
                intervalContigEndPos = genome.MakeRCCoordinate(intervalContigEndPos - 1);
                std::swap(intervalContigStartPos, intervalContigEndPos);
                alignment->tAlignedSeqPos = rcAlignedSeqPos;
                alignment->tStrand = Reverse;
            } else {
                // To place gaps consistently for both forward/reverse strand alignments,
                // reference genome is ALWAYS ALIGNED in FORWARD direction, rc query instead.
                alignment->tAlignedSeq.Copy(genome, alignment->tAlignedSeqPos,
                                            alignment->tAlignedSeqLength);
                alignment->tStrand = Forward;
                alignment->qStrand = Reverse;
            }
        }

        // Configure the part of the query that is aligned.  The entire
        // query should always be aligned.
        const auto ConfigureQuery = [&alignment](T_QuerySequence &inputRead) {
            alignment->qAlignedSeqPos = 0;
            alignment->qAlignedSeq.ReferenceSubstring(inputRead);
            alignment->qAlignedSeqLength = alignment->qAlignedSeq.length;
            alignment->qLength = inputRead.length;
        };
        assert(read.length == rcRead.length);
        ConfigureQuery(alignment->qStrand == Forward ? read : rcRead);

        if (params.verbosity > 1) {
            std::cout << "aligning read, qstrand is " << alignment->qStrand << ", tstrand is "
                      << alignment->tStrand << std::endl;
            static_cast<DNASequence *>(&(alignment->qAlignedSeq))->PrintSeq(std::cout);
            std::cout << std::endl << "aligning reference" << std::endl;
            static_cast<DNASequence *>(&(alignment->tAlignedSeq))->PrintSeq(std::cout);
            std::cout << std::endl;
        }

        //
        // The type of alignment that is performed depends on the mode
        // blasr is running in.  If it is running in normal mode, local
        // aligment is performed and guided by SDP alignment.  When
        // running in overlap mode, the alignments are forced to the ends
        // of reads.
        //

        int intervalSize = 0;
        //
        // Check to see if the matches to the genome are sufficiently
        // dense to allow them to be used instead of having to redo
        // sdp alignment.
        //

        // First count how much of the read matches the genome exactly.
        for (size_t m = 0; m < intvIt->matches.size(); m++) {
            intervalSize += intvIt->matches[m].l;
        }

        int subreadLength = forrev[(*intvIt).GetStrandIndex()]->SubreadEnd() -
                            forrev[(*intvIt).GetStrandIndex()]->SubreadStart();
        if ((1.0 * intervalSize) / subreadLength < params.sdpBypassThreshold and
            !params.emulateNucmer) {
            //
            // Not enough of the read maps to the genome, need to use
            // sdp alignment to define the regions of the read that map.
            //
            if (params.refineBetweenAnchorsOnly) {
                // rbao && placeGapConsistently can not be set together
                assert(not params.placeGapConsistently);
                //
                // Run SDP alignment only between the genomic anchors,
                // including the genomic anchors as part of the alignment.
                //
                size_t m;

                std::vector<ChainedMatchPos> *matches;
                std::vector<ChainedMatchPos> rcMatches;
                Alignment anchorsOnly;
                DNASequence tAlignedSeq;
                FASTQSequence qAlignedSeq;
                //
                // The strand bookkeeping is a bit confusing, so hopefully
                // this will set things straight.
                //
                // If the alignment is forward strand, the coordinates of the
                // blocks are relative to the forward read, starting at 0, not
                // the subread start.
                // If the alignment is reverse strand, the coordinates of the
                // blocks are relative to the reverse strand, starting at the
                // position of the subread on the reverse strand.
                //
                // The coordinates of the blocks in the genome are always
                // relative to the forward strand on the genome, starting at
                // 0.
                //

                //
                // The first step to refining between anchors only is to make
                // the anchors relative to the tAlignedSeq.

                matches = (std::vector<ChainedMatchPos> *)&(*intvIt).matches;
                tAlignedSeq = alignment->tAlignedSeq;
                qAlignedSeq = alignment->qAlignedSeq;

                if (alignment->tStrand == 0) {
                    for (m = 0; m < matches->size(); m++) {
                        (*matches)[m].t -= alignment->tAlignedSeqPos;
                        (*matches)[m].q -= alignment->qAlignedSeqPos;
                    }
                } else {
                    //
                    // Flip the entire alignment if it is on the reverse strand.
                    DNALength rcAlignedSeqPos = genome.MakeRCCoordinate(
                        alignment->tAlignedSeqPos + alignment->tAlignedSeqLength - 1);
                    for (m = 0; m < matches->size(); m++) {
                        (*matches)[m].t -= rcAlignedSeqPos;
                        (*matches)[m].q -= alignment->qAlignedSeqPos;
                    }

                    alignment->tAlignedSeq.CopyAsRC(tAlignedSeq);
                    rcMatches.resize((*intvIt).matches.size());
                    //
                    // Make the reverse complement of the match list.
                    //

                    // 1. Reverse complement the coordinates.
                    for (m = 0; m < (*intvIt).matches.size(); m++) {
                        int revCompIndex = rcMatches.size() - m - 1;
                        rcMatches[revCompIndex].q = read.MakeRCCoordinate(
                            (*intvIt).matches[m].q + (*intvIt).matches[m].l - 1);
                        rcMatches[revCompIndex].t = tAlignedSeq.MakeRCCoordinate(
                            (*intvIt).matches[m].t + (*intvIt).matches[m].l - 1);
                        rcMatches[revCompIndex].l = (*intvIt).matches[m].l;
                    }
                    matches = &rcMatches;
                }

                /*
                   Uncomment to get a dot plot
                   std::ofstream matchFile;
                   matchFile.open("matches.txt");
                   matchFile << "q t l " << std::endl;
                   for (m = 0; matches->size() > 0 and m < matches->size() - 1; m++) {
                   matchFile << (*matches)[m].q << " " << (*matches)[m].t << " " << (*matches)[m].l << std::endl;
                   }
                   */
                DNASequence tSubSeq;
                FASTQSequence qSubSeq;
                for (m = 0; matches->size() > 0 and m < matches->size() - 1; m++) {
                    Block block;
                    block.qPos = (*matches)[m].q;
                    block.tPos = (*matches)[m].t;
                    block.length = (*matches)[m].l;

                    //
                    // Find the lengths of the gaps between anchors.
                    //
                    int tGap, qGap;
                    tGap = (*matches)[m + 1].t - ((*matches)[m].t + (*matches)[m].l);
                    qGap = (*matches)[m + 1].q - ((*matches)[m].q + (*matches)[m].l);

                    if (tGap > 0 and qGap > 0) {
                        DNALength tPos, qPos;
                        tPos = block.tPos + block.length;
                        qPos = block.qPos + block.length;
                        tSubSeq.ReferenceSubstring(tAlignedSeq, tPos, tGap);
                        qSubSeq.ReferenceSubstring(alignment->qAlignedSeq, qPos, qGap);
                        Alignment alignmentInGap;

                        /*
                           The following code is experimental code for trying to do
                           something like affine gap alignment in long gaps.  It
                           would eventually be used in cDNA alignment to align
                           between exons, but for now is being tested here by using
                           it to align when there is a big gap between anchors.
                           */
                        if (params.separateGaps == true and qSubSeq.length > 0 and
                            tSubSeq.length > 0 and
                            ((1.0 * qSubSeq.length) / tSubSeq.length < 0.25)) {
                            OneGapAlign(qSubSeq, tSubSeq, distScoreFn, mappingBuffers,
                                        alignmentInGap);
                        } else {
                            /*
                               This is the 'normal/default' way to align between
                               gaps.  It is more well tested than OneGapAlign.
                               */
                            SDPAlign(qSubSeq, tSubSeq, distScoreFn, params.sdpTupleSize,
                                     params.sdpIns, params.sdpDel, params.indelRate * 2,
                                     alignmentInGap, mappingBuffers, Global,
                                     params.detailedSDPAlignment, params.extendFrontAlignment,
                                     params.recurseOver, params.fastSDP);
                        }

                        //
                        // Now, splice the fragment alignment into the current
                        // alignment.
                        //
                        if (alignmentInGap.blocks.size() > 0) {
                            size_t b;
                            //
                            // Configure this block to be relative to the beginning
                            // of the aligned substring.
                            //
                            for (b = 0; b < alignmentInGap.size(); b++) {
                                alignmentInGap.blocks[b].tPos += tPos + alignmentInGap.tPos;
                                alignmentInGap.blocks[b].qPos += qPos + alignmentInGap.qPos;
                                assert(alignmentInGap.blocks[b].tPos <
                                       alignment->tAlignedSeq.length);
                                assert(alignmentInGap.blocks[b].qPos <
                                       alignment->qAlignedSeq.length);
                            }
                        }
                        // Add the original block
                        alignment->blocks.push_back(block);
                        anchorsOnly.blocks.push_back(block);
                        // Add the blocks for the refined alignment
                        alignment->blocks.insert(alignment->blocks.end(),
                                                 alignmentInGap.blocks.begin(),
                                                 alignmentInGap.blocks.end());
                    }
                }

                // Add the last block
                m = (*matches).size() - 1;
                Block block;
                block.qPos = (*matches)[m].q;
                block.tPos = (*matches)[m].t;

                assert(block.tPos <= alignment->tAlignedSeq.length);
                assert(block.qPos <= alignment->qAlignedSeq.length);

                block.length = (*matches)[m].l;
                alignment->blocks.push_back(block);
                anchorsOnly.blocks.push_back(block);

                //
                // By convention, blocks start at 0, and the
                // alignment->tPos,qPos give the start of the alignment.
                // Modify the block positions so that they are offset by 0.
                alignment->tPos = alignment->blocks[0].tPos;
                alignment->qPos = alignment->blocks[0].qPos;
                size_t b;
                size_t blocksSize = alignment->blocks.size();
                for (b = 0; b < blocksSize; b++) {
                    assert(alignment->tPos <= alignment->blocks[b].tPos);
                    assert(alignment->qPos <= alignment->blocks[b].qPos);
                    alignment->blocks[b].tPos -= alignment->tPos;
                    alignment->blocks[b].qPos -= alignment->qPos;
                }
                for (b = 0; b < anchorsOnly.blocks.size(); b++) {
                    anchorsOnly.blocks[b].tPos -= alignment->tPos;
                    anchorsOnly.blocks[b].qPos -= alignment->qPos;
                }
                anchorsOnly.tPos = alignment->tPos;
                anchorsOnly.qPos = alignment->qPos;
                ComputeAlignmentStats(*alignment, alignment->qAlignedSeq.seq,
                                      alignment->tAlignedSeq.seq, distScoreFn);

                tAlignedSeq.Free();
                qAlignedSeq.Free();
                tSubSeq.Free();
                qSubSeq.Free();
            } else {
                alignScore =
                    SDPAlign(alignment->qAlignedSeq, alignment->tAlignedSeq, distScoreFn,
                             sdpTupleSize, params.sdpIns, params.sdpDel, params.indelRate * 3,
                             *alignment, mappingBuffers, Local, params.detailedSDPAlignment,
                             params.extendFrontAlignment, params.recurseOver, params.fastSDP);
                ComputeAlignmentStats(*alignment, alignment->qAlignedSeq.seq,
                                      alignment->tAlignedSeq.seq, distScoreFn);
            }
        } else {
            //
            // The anchors used to anchor the sequence are sufficient to extend the alignment.
            //
            size_t m;
            for (m = 0; m < (*intvIt).matches.size(); m++) {
                Block block;
                block.qPos = (*intvIt).matches[m].q - alignment->qAlignedSeqPos;
                block.tPos = (*intvIt).matches[m].t - alignment->tAlignedSeqPos;
                block.length = (*intvIt).matches[m].l;
                alignment->blocks.push_back(block);
            }
        }

        //
        //  The anchors/sdp alignments may leave portions of the read
        //  unaligned at the beginning and end.  If the parameters
        //  specify extending alignments, try and align extra bases at
        //  the beginning and end of alignments.
        if (params.extendAlignments) {
            // extend && placeGapConsistently can not be set together
            assert(not params.placeGapConsistently);

            //
            // Modify the alignment so that the start and end of the
            // alignment strings are at the alignment boundaries.
            //
            // Since the query sequence is pointing at a subsequence of the
            // read (and is always in the forward direction), just reference
            // a new portion of the read.
            alignment->qAlignedSeqPos = alignment->qAlignedSeqPos + alignment->qPos;
            alignment->qAlignedSeqLength = alignment->QEnd();
            alignment->qAlignedSeq.ReferenceSubstring(read, alignment->qAlignedSeqPos,
                                                      alignment->qAlignedSeqLength);
            alignment->qPos = 0;

            //
            // Since the target sequence may be on the forward or reverse
            // strand, a copy of the subsequence is made, and the original
            // sequence free'd.
            //
            DNASequence tSubseq;
            alignment->tAlignedSeqPos = alignment->tAlignedSeqPos + alignment->tPos;
            alignment->tAlignedSeqLength = alignment->TEnd();
            tSubseq.Copy(alignment->tAlignedSeq, alignment->tPos, alignment->tAlignedSeqLength);
            alignment->tPos = 0;

            alignment->tAlignedSeq.Free();
            alignment->tAlignedSeq.TakeOwnership(tSubseq);

            DNALength maximumExtendLength = 500;

            if (alignment->blocks.size() > 0) {
                int lastAlignedBlock = alignment->blocks.size() - 1;
                DNALength lastAlignedQPos = alignment->blocks[lastAlignedBlock].QEnd() +
                                            alignment->qPos + alignment->qAlignedSeqPos;
                DNALength lastAlignedTPos = alignment->blocks[lastAlignedBlock].TEnd() +
                                            alignment->tPos + alignment->tAlignedSeqPos;
                T_AlignmentCandidate extendedAlignmentForward, extendedAlignmentReverse;
                int forwardScore, reverseScore;

                SMRTSequence readSuffix;
                DNALength readSuffixLength;
                DNASequence genomeSuffix;
                DNALength genomeSuffixLength;

                SMRTSequence readPrefix;
                DNALength readPrefixLength;
                DNASequence genomePrefix;
                DNALength genomePrefixLength;

                //
                // Align the entire end of the read if it is short enough.
                //
                readSuffixLength = std::min(read.length - lastAlignedQPos, maximumExtendLength);
                if (readSuffixLength > 0) {
                    readSuffix.ReferenceSubstring(read, lastAlignedQPos, readSuffixLength);
                } else {
                    readSuffix.length = 0;
                }

                //
                // Align The entire end of the genome up to the maximum extend length;
                //
                genomeSuffixLength =
                    std::min(intervalContigEndPos - lastAlignedTPos, maximumExtendLength);
                if (genomeSuffixLength > 0) {
                    if (alignment->tStrand == Forward) {
                        genomeSuffix.Copy(genome, lastAlignedTPos, genomeSuffixLength);
                    } else {
                        static_cast<DNASequence *>(&genome)->CopyAsRC(genomeSuffix, lastAlignedTPos,
                                                                      genomeSuffixLength);
                    }
                } else {
                    genomeSuffix.length = 0;
                }
                forwardScore = 0;
                if (readSuffix.length > 0 and genomeSuffix.length > 0) {
                    forwardScore = ExtendAlignmentForward(
                        readSuffix, 0, genomeSuffix, 0, params.extendBandSize,
                        // Reuse buffers to speed up alignment
                        mappingBuffers.scoreMat, mappingBuffers.pathMat,
                        // Do the alignment in the forward direction.
                        extendedAlignmentForward, distScoreFn,
                        1,  // don't bother attempting
                        // to extend the alignment
                        // if one of the sequences
                        // is less than 1 base long
                        params.maxExtendDropoff);
                }

                if (forwardScore < 0) {
                    //
                    // The extended alignment considers the whole genome, but
                    // should be modified to be starting at the end of where
                    // the original alignment left off.
                    //
                    if (params.verbosity > 0) {
                        std::cout << "forward extended an alignment of score " << alignment->score
                                  << " with score " << forwardScore << " by "
                                  << extendedAlignmentForward.blocks.size() << " blocks and length "
                                  << extendedAlignmentForward
                                         .blocks[extendedAlignmentForward.blocks.size() - 1]
                                         .qPos
                                  << std::endl;
                    }
                    extendedAlignmentForward.tAlignedSeqPos = lastAlignedTPos;

                    extendedAlignmentForward.qAlignedSeqPos = lastAlignedQPos;

                    genomeSuffix.length =
                        extendedAlignmentForward.tPos + extendedAlignmentForward.TEnd();
                    alignment->tAlignedSeq.Append(genomeSuffix);
                    alignment->qAlignedSeq.length +=
                        extendedAlignmentForward.qPos + extendedAlignmentForward.QEnd();
                    assert(alignment->qAlignedSeq.length <= read.length);
                    alignment->AppendAlignment(extendedAlignmentForward);
                }

                DNALength firstAlignedQPos = alignment->qPos + alignment->qAlignedSeqPos;
                DNALength firstAlignedTPos = alignment->tPos + alignment->tAlignedSeqPos;

                readPrefixLength = std::min(firstAlignedQPos, maximumExtendLength);
                if (readPrefixLength > 0) {
                    readPrefix.ReferenceSubstring(read, firstAlignedQPos - readPrefixLength,
                                                  readPrefixLength);
                } else {
                    readPrefix.length = 0;
                }

                genomePrefixLength =
                    std::min(firstAlignedTPos - intervalContigStartPos, maximumExtendLength);
                if (genomePrefixLength > 0) {
                    if (alignment->tStrand == 0) {
                        genomePrefix.Copy(genome, firstAlignedTPos - genomePrefixLength,
                                          genomePrefixLength);
                    } else {
                        static_cast<DNASequence *>(&genome)->MakeRC(
                            genomePrefix, firstAlignedTPos - genomePrefixLength,
                            genomePrefixLength);
                    }
                }
                reverseScore = 0;
                if (readPrefix.length > 0 and genomePrefix.length > 0) {
                    reverseScore = ExtendAlignmentReverse(
                        readPrefix, readPrefix.length - 1, genomePrefix, genomePrefixLength - 1,
                        params.extendBandSize,  //k
                        mappingBuffers.scoreMat, mappingBuffers.pathMat, extendedAlignmentReverse,
                        distScoreFn,
                        1,  // don't bother attempting
                        // to extend the alignment
                        // if one of the sequences
                        // is less than 1 base long
                        params.maxExtendDropoff);
                }

                if (reverseScore < 0) {
                    //
                    // Make alignment->tPos relative to the beginning of the
                    // extended alignment so that when it is appended, the
                    // coordinates match correctly.
                    if (params.verbosity > 0) {
                        std::cout << "reverse extended an alignment of score " << alignment->score
                                  << " with score " << reverseScore << " by "
                                  << extendedAlignmentReverse.blocks.size() << " blocks and length "
                                  << extendedAlignmentReverse
                                         .blocks[extendedAlignmentReverse.blocks.size() - 1]
                                         .qPos
                                  << std::endl;
                    }
                    extendedAlignmentReverse.tAlignedSeqPos = firstAlignedTPos - genomePrefixLength;
                    extendedAlignmentReverse.qAlignedSeqPos = firstAlignedQPos - readPrefixLength;
                    extendedAlignmentReverse.AppendAlignment(*alignment);

                    genomePrefix.Append(alignment->tAlignedSeq,
                                        genomePrefix.length - alignment->tPos);
                    alignment->tAlignedSeq.Free();
                    alignment->tAlignedSeq.TakeOwnership(genomePrefix);

                    alignment->blocks = extendedAlignmentReverse.blocks;

                    alignment->tAlignedSeqPos = extendedAlignmentReverse.tAlignedSeqPos;
                    alignment->tPos = extendedAlignmentReverse.tPos;

                    alignment->qAlignedSeqPos = extendedAlignmentReverse.qAlignedSeqPos;
                    alignment->qAlignedSeq.length =
                        readPrefix.length + alignment->qAlignedSeq.length;
                    alignment->qPos = extendedAlignmentReverse.qPos;
                    alignment->qAlignedSeq.seq = readPrefix.seq;
                    //
                    // Make sure the two ways of accounting for aligned sequence
                    // length are in sync.  This needs to go.
                    //
                    if (alignment->blocks.size() > 0) {
                        alignment->qAlignedSeqLength = alignment->qAlignedSeq.length;
                        alignment->tAlignedSeqLength = alignment->tAlignedSeq.length;
                    } else {
                        alignment->qAlignedSeqLength = alignment->qAlignedSeq.length = 0;
                        alignment->tAlignedSeqLength = alignment->tAlignedSeq.length = 0;
                    }
                }  // end of if (reverseScore < 0 )
                readSuffix.Free();
                readPrefix.Free();
                genomePrefix.Free();
                genomeSuffix.Free();
            }
            tSubseq.Free();
        }

        if (params.verbosity > 0) {
            std::cout << "interval align score: " << alignScore << std::endl;
            StickPrintAlignment(*alignment, (DNASequence &)alignment->qAlignedSeq,
                                (DNASequence &)alignment->tAlignedSeq, std::cout, 0,
                                alignment->tAlignedSeqPos);
        }
        ComputeAlignmentStats(*alignment, alignment->qAlignedSeq.seq, alignment->tAlignedSeq.seq,
                              distScoreFn2);
        //SMRTDistanceMatrix, ins, del );

        intvIt++;
    } while (intvIt != weightedIntervals.end());
}

template <typename T_RefSequence, typename T_Sequence>
void PairwiseLocalAlign(T_Sequence &qSeq, T_RefSequence &tSeq, int k, MappingParameters &params,
                        T_AlignmentCandidate &alignment, MappingBuffers &mappingBuffers,
                        AlignmentType alignType)
{
    //
    // Perform a pairwise alignment between qSeq and tSeq, but choose
    // the pairwise alignment method based on the parameters.  The
    // options for pairwise alignment are:
    //  - Affine KBanded alignment: usually used for sequences with no
    //                              quality information.
    //  - KBanded alignment: For sequences with quality information.
    //                       Gaps are scored with quality values.
    //
    QualityValueScoreFunction<DNASequence, FASTQSequence> scoreFn;
    scoreFn.del = params.indel;
    scoreFn.ins = params.indel;

    DistanceMatrixScoreFunction<DNASequence, FASTASequence> distScoreFn2(
        SMRTDistanceMatrix, params.indel, params.indel);

    IDSScoreFunction<DNASequence, FASTQSequence> idsScoreFn;
    idsScoreFn.ins = params.insertion;
    idsScoreFn.del = params.deletion;
    idsScoreFn.substitutionPrior = params.substitutionPrior;
    idsScoreFn.globalDeletionPrior = params.globalDeletionPrior;
    idsScoreFn.InitializeScoreMatrix(SMRTDistanceMatrix);

    int kbandScore;
    int qvAwareScore;
    if (params.ignoreQualities || qSeq.qual.Empty() || !ReadHasMeaningfulQualityValues(qSeq)) {

        kbandScore = AffineKBandAlign(
            qSeq, tSeq, SMRTDistanceMatrix, params.indel + 2,
            params.indel - 3,                    // homopolymer insertion open and extend
            params.indel + 2, params.indel - 1,  // any insertion open and extend
            params.indel,                        // deletion
            k * 1.2, mappingBuffers.scoreMat, mappingBuffers.pathMat, mappingBuffers.hpInsScoreMat,
            mappingBuffers.hpInsPathMat, mappingBuffers.insScoreMat, mappingBuffers.insPathMat,
            alignment, Global);

        alignment.score = kbandScore;
        if (params.verbosity >= 2) {
            std::cout << "align score: " << kbandScore << std::endl;
        }
    } else {

        if (qSeq.insertionQV.Empty() == false) {
            qvAwareScore = KBandAlign(qSeq, tSeq, SMRTDistanceMatrix,
                                      params.indel + 2,  // ins
                                      params.indel + 2,  // del
                                      k, mappingBuffers.scoreMat, mappingBuffers.pathMat, alignment,
                                      idsScoreFn, alignType);
            if (params.verbosity >= 2) {
                std::cout << "ids score fn score: " << qvAwareScore << std::endl;
            }
        } else {
            qvAwareScore = KBandAlign(qSeq, tSeq, SMRTDistanceMatrix,
                                      params.indel + 2,  // ins
                                      params.indel + 2,  // del
                                      k, mappingBuffers.scoreMat, mappingBuffers.pathMat, alignment,
                                      scoreFn, alignType);
            if (params.verbosity >= 2) {
                std::cout << "qv score fn score: " << qvAwareScore << std::endl;
            }
        }
        alignment.sumQVScore = qvAwareScore;
        alignment.score = qvAwareScore;
        alignment.probScore = 0;
    }
    // Compute stats and assign a default alignment score using an edit distance.
    ComputeAlignmentStats(alignment, qSeq.seq, tSeq.seq, distScoreFn2);

    if (params.scoreType == 1) {
        alignment.score = alignment.sumQVScore;
    }
}

// Extend target aligned sequence of the input alignement to both ends
// by flankSize bases. Update alignment->tAlignedSeqPos,
// alignment->tAlignedSeqLength and alignment->tAlignedSeq.
void FlankTAlignedSeq(T_AlignmentCandidate *alignment, SequenceIndexDatabase<FASTQSequence> &seqdb,
                      DNASequence &genome, int flankSize)
{
    assert(alignment != NULL and alignment->tIsSubstring);

    UInt forwardTPos, newTAlignedSeqPos, newTAlignedSeqLen;
    // New aligned start position relative to this chromosome, with
    // the same direction as alignment->tStrand.
    newTAlignedSeqPos =
        UInt((alignment->tAlignedSeqPos > UInt(flankSize)) ? (alignment->tAlignedSeqPos - flankSize)
                                                           : 0);
    newTAlignedSeqLen =
        std::min(alignment->tAlignedSeqPos + alignment->tAlignedSeqLength + flankSize,
                 alignment->tLength) -
        newTAlignedSeqPos;

    if (alignment->tStrand == 0) {
        forwardTPos = newTAlignedSeqPos;
    } else {
        forwardTPos = alignment->tLength - newTAlignedSeqPos - 1;
    }

    // Find where this chromosome is in the genome.
    int seqIndex = seqdb.GetIndexOfSeqName(alignment->tName);
    assert(seqIndex != -1);
    UInt newGenomePos = seqdb.ChromosomePositionToGenome(seqIndex, forwardTPos);

    if (alignment->tIsSubstring == false) {
        alignment->tAlignedSeq.Free();
    }
    alignment->tAlignedSeqPos = newTAlignedSeqPos;
    alignment->tAlignedSeqLength = newTAlignedSeqLen;
    if (alignment->tStrand == 0) {
        alignment->tAlignedSeq.ReferenceSubstring(genome, newGenomePos, newTAlignedSeqLen);
    } else {
        // Copy and then reverse complement.
        genome.MakeRC(alignment->tAlignedSeq, newGenomePos + 1 - alignment->tAlignedSeqLength,
                      alignment->tAlignedSeqLength);
        alignment->tIsSubstring = false;
    }
}

// Align a subread of a SMRT sequence to target sequence of an alignment.
// Input:
//   subread         - a subread of a SMRT sequence.
//   unrolledRead    - the full SMRT sequence.
//   alignment       - an alignment.
//   passDirection   - whether or not the subread has the
//                     same direction as query of the alignment.
//                     0 = true, 1 = false.
//   subreadInterval - [start, end) interval of the subread in the
//                     SMRT read.
//   subreadIndex    - index of the subread in allReadAlignments.
//   params          - mapping paramters.
// Output:
//   allReadAlignments - where the sequence and alignments of the
//                       subread are saved.
//   threadOut         - an out stream for debugging the current thread.
void AlignSubreadToAlignmentTarget(ReadAlignments &allReadAlignments, SMRTSequence &subread,
                                   SMRTSequence &unrolledRead, T_AlignmentCandidate *alignment,
                                   int passDirection, ReadInterval &subreadInterval,
                                   int subreadIndex, MappingParameters &params,
                                   MappingBuffers &mappingBuffers, std::ostream &threadOut)
{
    assert(passDirection == 0 or passDirection == 1);
    //
    // Determine where in the genome the subread has mapped.
    //
    DNASequence alignedForwardRefSequence, alignedReverseRefSequence;

    if (alignment->tStrand == 0) {
        // This needs to be changed -- copy copies RHS into LHS,
        // CopyAsRC copies LHS into RHS
        alignedForwardRefSequence.Copy(alignment->tAlignedSeq);
        alignment->tAlignedSeq.CopyAsRC(alignedReverseRefSequence);
    } else {
        alignment->tAlignedSeq.CopyAsRC(alignedForwardRefSequence);
        alignedReverseRefSequence.Copy(alignment->tAlignedSeq);
    }

    IDSScoreFunction<DNASequence, FASTQSequence> idsScoreFn;
    idsScoreFn.ins = params.insertion;
    idsScoreFn.del = params.deletion;
    idsScoreFn.InitializeScoreMatrix(SMRTDistanceMatrix);
    idsScoreFn.globalDeletionPrior = params.globalDeletionPrior;
    idsScoreFn.substitutionPrior = params.substitutionPrior;

    DistanceMatrixScoreFunction<DNASequence, FASTQSequence> distScoreFn2(
        SMRTDistanceMatrix, params.indel, params.indel);
    //
    // Determine the strand to align the subread to.
    //
    T_AlignmentCandidate exploded;
    bool sameAlignmentPassDirection =
        ((alignment->tStrand == alignment->qStrand) ? (passDirection == 0) : (passDirection == 1));
    bool computeProbIsFalse = false;

    // Config aligned query read and aligned target read;
    SMRTSequence rcsubread;
    subread.MakeRC(rcsubread);
    SMRTSequence &alignedRead = subread;
    DNASequence &alignedRefSequence =
        (sameAlignmentPassDirection ? alignedForwardRefSequence : alignedReverseRefSequence);

    if (params.placeGapConsistently and !sameAlignmentPassDirection) {
        alignedRead = rcsubread;
        alignedRefSequence = alignedForwardRefSequence;
    }

    //
    // In the original code, parameters: bandSize=10, alignType=Global,
    // sdpTupleSize=4 (instead of 12, Local and 6) were used when
    // alignment & pass have different directions.
    //
    int explodedScore =
        GuidedAlign(alignedRead, alignedRefSequence, idsScoreFn, 12, params.sdpIns, params.sdpDel,
                    params.indelRate, mappingBuffers, exploded, Local, computeProbIsFalse, 6);

    if (params.verbosity >= 3) {
        threadOut << "zmw " << unrolledRead.zmwData.holeNumber << ", subreadIndex " << subreadIndex
                  << ", passDirection " << passDirection << ", subreadInterval ["
                  << subreadInterval.start << ", " << subreadInterval.end << ")" << std::endl
                  << "Exploded score " << explodedScore << std::endl
                  << "StickPrintAlignment subread-reference alignment which has"
                  << " the " << (sameAlignmentPassDirection ? "same" : "different")
                  << " direction as the ccs-reference (or the "
                  << "longestSubread-reference) alignment. " << std::endl
                  << "subread: " << std::endl;
        static_cast<DNASequence *>(&alignedRead)->PrintSeq(threadOut);
        threadOut << std::endl;
        threadOut << "alignedRefSeq: " << std::endl;
        static_cast<DNASequence *>(&alignedRefSequence)->PrintSeq(threadOut);
        StickPrintAlignment(exploded, (DNASequence &)alignedRead, (DNASequence &)alignedRefSequence,
                            threadOut, exploded.qAlignedSeqPos, exploded.tAlignedSeqPos);
    }

    if (exploded.blocks.size() > 0) {
        DistanceMatrixScoreFunction<DNASequence, FASTQSequence> distScoreFn(
            SMRTDistanceMatrix, params.indel, params.indel);
        ComputeAlignmentStats(exploded, alignedRead.seq, alignedRefSequence.seq, distScoreFn2);
        if (exploded.score <= params.maxScore) {
            //
            // The coordinates of the alignment should be
            // relative to the reference sequence (the specified chromosome,
            // not the whole genome).
            //
            const DNALength q0 = subreadInterval.start;
            const DNALength q1 = unrolledRead.length - subreadInterval.end;
            const DNALength t0 = alignment->tAlignedSeqPos;
            const DNALength t1 =
                alignment->tLength - alignment->tAlignedSeqPos - alignment->tAlignedSeqLength;

            const auto ConfigureExploded = [&exploded](const int qStrand, const int tStrand,
                                                       const DNALength qasp, const DNALength tasp) {
                exploded.qStrand = qStrand;
                exploded.tStrand = tStrand;
                exploded.tAlignedSeqPos = tasp;
                exploded.qAlignedSeqPos = qasp;
            };
            // Illustrative table below.
            // a - alignment, e - exploded alignment
            // q - query, t - target, s - strand,
            // apos - AlignedSeqPos, asl - AlignedSeqLength,
            // P - passDirection, 0=subread has the same direction as the template read
            // S - sameAlignmentPassDirection, true/y=subread has the same direction as target
            // pgc - place gap consistently,
            // F - Forward, R - Reverse, n - false, y - true
            // q0 = subreadInterval.start, q1 = a.qLength - a.qtasp - a.qasl
            // t0 = a.tapos, t1 = a.tLength - a.tasp - a.tasl
            // +----------------------------------------------------------+
            // | pgc | P | S | a.qs | a.ts | e.qs | e.ts | e.qasp |e.tasp |
            // +----------------------------------------------------------+
            // | n   | 0 | y | F    | F    | F    | F    | q0     | t0    |
            // | n   | 1 | n | F    | F    | F    | R    | q0     | t1    |
            // | n   | 0 | n | F    | R    | F    | R    | q0     | t0    |
            // | n   | 1 | y | F    | R    | F    | F    | q0     | t1    |
            // +----------------------------------------------------------+
            // | y   | 0 | y | F    | F    | F    | F    | q0     | t0    |
            // | y   | 1 | n | F    | F    | R    | F    | q1     | t0    |
            // | y   | 0 | n | R    | F    | R    | F    | q1     | t0    |
            // | y   | 1 | y | R    | F    | F    | F    | q0     | t0    |
            // +----------------------------------------------------------+
            const int eqs = (!params.placeGapConsistently || sameAlignmentPassDirection)
                                ? (Forward)
                                : (Reverse);
            const int ets =
                (params.placeGapConsistently || sameAlignmentPassDirection) ? (Forward) : (Reverse);
            const DNALength eqasp =
                (!params.placeGapConsistently || sameAlignmentPassDirection) ? (q0) : (q1);
            const DNALength etasp =
                (params.placeGapConsistently || passDirection == 0) ? (t0) : (t1);
            ConfigureExploded(eqs, ets, eqasp, etasp);

            exploded.qLength = unrolledRead.length;
            exploded.tLength = alignment->tLength;
            exploded.qAlignedSeqLength = subreadInterval.end - subreadInterval.start;
            exploded.tAlignedSeqLength = alignment->tAlignedSeqLength;
            exploded.qAlignedSeq.ReferenceSubstring(alignedRead);
            exploded.tAlignedSeq.Copy(alignedRefSequence);
            exploded.mapQV = alignment->mapQV;
            exploded.tName = alignment->tName;
            exploded.tIndex = alignment->tIndex;

            std::stringstream namestrm;
            namestrm << "/" << subreadInterval.start << "_" << subreadInterval.end;
            exploded.qName = std::string(unrolledRead.title) + namestrm.str();

            //
            // Don't call AssignRefContigLocation as the coordinates
            // of the alignment is already relative to the chromosome coordiantes.
            //
            // Save this alignment for printing later.
            //
            T_AlignmentCandidate *alignmentPtr = new T_AlignmentCandidate;
            // Refine concordant alignments
            if (params.refineConcordantAlignments) {
                std::vector<SMRTSequence *> vquery;
                vquery.push_back(&unrolledRead);
                SMRTSequence rcUnrolledRead;
                unrolledRead.MakeRC(rcUnrolledRead);
                vquery.push_back(&rcUnrolledRead);
                RefineAlignment(vquery, alignedRefSequence, exploded, params, mappingBuffers);
            }

            *alignmentPtr = exploded;
            //
            // Check if need to be filtered
            // For now filtering only in concordant mode
            // Later add filtration in other modes
            //
            if (allReadAlignments.alignMode == ZmwSubreads) {
                if (params.filterCriteria.Satisfy(alignmentPtr)) {
                    if (params.verbosity > 3) {
                        std::cerr << " Filters passed. Adding slave alignment in concordant mode"
                                  << std::endl;
                    }
                    allReadAlignments.AddAlignmentForSeq(subreadIndex, alignmentPtr);
                } else {
                    // delete alignment immediately
                    if (params.verbosity > 3) {
                        std::cerr << " Filters failed. Delete alignment immediately" << std::endl;
                    }
                    delete alignmentPtr;
                }
            }
            // for all modes except ZmwSubreads no filtering for now
            else {
                allReadAlignments.AddAlignmentForSeq(subreadIndex, alignmentPtr);
            }
        }  // End of exploded score <= maxScore.
        if (params.verbosity >= 3) {
            threadOut << "exploded score: " << exploded.score << std::endl
                      << "exploded alignment: " << std::endl;
            exploded.Print(threadOut);
            threadOut << std::endl;
        }
    }  // End of exploded.blocks.size() > 0.
}