1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "render_audio.h"
#include "util.h"
#include "config.h"
#include "blastem.h"
static uint8_t output_channels;
static uint32_t buffer_samples, sample_rate;
static audio_source *audio_sources[8];
static audio_source *inactive_audio_sources[8];
static uint8_t num_audio_sources;
static uint8_t num_inactive_audio_sources;
static float overall_gain_mult, *mix_buf;
static int sample_size;
typedef void (*conv_func)(float *samples, void *vstream, int sample_count);
static void convert_null(float *samples, void *vstream, int sample_count)
{
memset(vstream, 0, sample_count * sample_size);
}
static void convert_s16(float *samples, void *vstream, int sample_count)
{
int16_t *stream = vstream;
for (int16_t *end = stream + sample_count; stream < end; stream++, samples++)
{
float sample = *samples;
int16_t out_sample;
if (sample >= 1.0f) {
out_sample = 0x7FFF;
} else if (sample <= -1.0f) {
out_sample = -0x8000;
} else {
out_sample = sample * 0x7FFF;
}
*stream = out_sample;
}
}
static void clamp_f32(float *samples, void *vstream, int sample_count)
{
for (; sample_count > 0; sample_count--, samples++)
{
float sample = *samples;
if (sample > 1.0f) {
sample = 1.0f;
} else if (sample < -1.0f) {
sample = -1.0f;
}
*samples = sample;
}
}
static int32_t mix_f32(audio_source *audio, float *stream, int samples)
{
float *end = stream + samples;
int16_t *src = audio->front;
uint32_t i = audio->read_start;
uint32_t i_end = audio->read_end;
float *cur = stream;
float gain_mult = audio->gain_mult * overall_gain_mult;
size_t first_add = output_channels > 1 ? 1 : 0, second_add = output_channels > 1 ? output_channels - 1 : 1;
if (audio->num_channels == 1) {
while (cur < end && i != i_end)
{
*cur += gain_mult * ((float)src[i]) / 0x7FFF;
cur += first_add;
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += second_add;
i &= audio->mask;
}
} else {
while(cur < end && i != i_end)
{
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += first_add;
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += second_add;
i &= audio->mask;
}
}
if (!render_is_audio_sync()) {
audio->read_start = i;
}
if (cur != end) {
debug_message("Underflow of %d samples, read_start: %d, read_end: %d, mask: %X\n", (int)(end-cur)/2, audio->read_start, audio->read_end, audio->mask);
return (cur-end)/2;
} else {
return ((i_end - i) & audio->mask) / audio->num_channels;
}
}
static conv_func convert;
int mix_and_convert(unsigned char *byte_stream, int len, int *min_remaining_out)
{
int samples = len / sample_size;
float *mix_dest = mix_buf ? mix_buf : (float *)byte_stream;
memset(mix_dest, 0, samples * sizeof(float));
int min_buffered = INT_MAX;
int min_remaining_buffer = INT_MAX;
for (uint8_t i = 0; i < num_audio_sources; i++)
{
int buffered = mix_f32(audio_sources[i], mix_dest, samples);
int remaining = (audio_sources[i]->mask + 1) / audio_sources[i]->num_channels - buffered;
min_buffered = buffered < min_buffered ? buffered : min_buffered;
min_remaining_buffer = remaining < min_remaining_buffer ? remaining : min_remaining_buffer;
audio_sources[i]->front_populated = 0;
render_buffer_consumed(audio_sources[i]);
}
convert(mix_dest, byte_stream, samples);
if (min_remaining_out) {
*min_remaining_out = min_remaining_buffer;
}
return min_buffered;
}
uint8_t all_sources_ready(void)
{
uint8_t num_populated = 0;
num_populated = 0;
for (uint8_t i = 0; i < num_audio_sources; i++)
{
if (audio_sources[i]->front_populated) {
num_populated++;
}
}
return num_populated == num_audio_sources;
}
#define BUFFER_INC_RES 0x40000000UL
void render_audio_adjust_clock(audio_source *src, uint64_t master_clock, uint64_t sample_divider)
{
src->buffer_inc = ((BUFFER_INC_RES * (uint64_t)sample_rate) / master_clock) * sample_divider;
}
void render_audio_adjust_speed(float adjust_ratio)
{
for (uint8_t i = 0; i < num_audio_sources; i++)
{
audio_sources[i]->buffer_inc = ((double)audio_sources[i]->buffer_inc) + ((double)audio_sources[i]->buffer_inc) * adjust_ratio + 0.5;
}
}
audio_source *render_audio_source(uint64_t master_clock, uint64_t sample_divider, uint8_t channels)
{
audio_source *ret = NULL;
uint32_t alloc_size = render_is_audio_sync() ? channels * buffer_samples : nearest_pow2(render_min_buffered() * 4 * channels);
render_lock_audio();
if (num_audio_sources < 8) {
ret = calloc(1, sizeof(audio_source));
ret->back = malloc(alloc_size * sizeof(int16_t));
ret->front = render_is_audio_sync() ? malloc(alloc_size * sizeof(int16_t)) : ret->back;
ret->front_populated = 0;
ret->opaque = render_new_audio_opaque();
ret->num_channels = channels;
audio_sources[num_audio_sources++] = ret;
}
render_unlock_audio();
if (!ret) {
fatal_error("Too many audio sources!");
} else {
render_audio_adjust_clock(ret, master_clock, sample_divider);
double lowpass_cutoff = get_lowpass_cutoff(config);
double rc = (1.0 / lowpass_cutoff) / (2.0 * M_PI);
ret->dt = 1.0 / ((double)master_clock / (double)(sample_divider));
double alpha = ret->dt / (ret->dt + rc);
ret->lowpass_alpha = (int32_t)(((double)0x10000) * alpha);
ret->buffer_pos = 0;
ret->buffer_fraction = 0;
ret->last_left = ret->last_right = 0;
ret->read_start = 0;
ret->read_end = render_is_audio_sync() ? buffer_samples * channels : 0;
ret->mask = render_is_audio_sync() ? 0xFFFFFFFF : alloc_size-1;
ret->gain_mult = 1.0f;
}
render_audio_created(ret);
return ret;
}
static float db_to_mult(float gain)
{
return powf(10.0f, gain/20.0f);
}
void render_audio_source_gaindb(audio_source *src, float gain)
{
src->gain_mult = db_to_mult(gain);
}
void render_pause_source(audio_source *src)
{
uint8_t found = 0, remaining_sources;
render_lock_audio();
for (uint8_t i = 0; i < num_audio_sources; i++)
{
if (audio_sources[i] == src) {
audio_sources[i] = audio_sources[--num_audio_sources];
found = 1;
remaining_sources = num_audio_sources;
break;
}
}
render_unlock_audio();
if (found) {
render_source_paused(src, remaining_sources);
}
inactive_audio_sources[num_inactive_audio_sources++] = src;
}
void render_resume_source(audio_source *src)
{
render_lock_audio();
if (num_audio_sources < 8) {
audio_sources[num_audio_sources++] = src;
}
render_unlock_audio();
for (uint8_t i = 0; i < num_inactive_audio_sources; i++)
{
if (inactive_audio_sources[i] == src) {
inactive_audio_sources[i] = inactive_audio_sources[--num_inactive_audio_sources];
}
}
render_source_resumed(src);
}
void render_free_source(audio_source *src)
{
uint8_t found = 0;
for (uint8_t i = 0; i < num_inactive_audio_sources; i++)
{
if (inactive_audio_sources[i] == src) {
inactive_audio_sources[i] = inactive_audio_sources[--num_inactive_audio_sources];
found = 1;
break;
}
}
if (!found) {
render_pause_source(src);
num_inactive_audio_sources--;
}
free(src->front);
if (render_is_audio_sync()) {
free(src->back);
render_free_audio_opaque(src->opaque);
}
free(src);
}
static int16_t lowpass_sample(audio_source *src, int16_t last, int16_t current)
{
int32_t tmp = current * src->lowpass_alpha + last * (0x10000 - src->lowpass_alpha);
current = tmp >> 16;
return current;
}
static void interp_sample(audio_source *src, int16_t last, int16_t current)
{
int64_t tmp = last * ((src->buffer_fraction << 16) / src->buffer_inc);
tmp += current * (0x10000 - ((src->buffer_fraction << 16) / src->buffer_inc));
src->back[src->buffer_pos++] = tmp >> 16;
}
static uint32_t sync_samples;
void render_put_mono_sample(audio_source *src, int16_t value)
{
value = lowpass_sample(src, src->last_left, value);
src->buffer_fraction += src->buffer_inc;
uint32_t base = render_is_audio_sync() ? 0 : src->read_end;
while (src->buffer_fraction > BUFFER_INC_RES)
{
src->buffer_fraction -= BUFFER_INC_RES;
interp_sample(src, src->last_left, value);
if (((src->buffer_pos - base) & src->mask) >= sync_samples) {
render_do_audio_ready(src);
}
src->buffer_pos &= src->mask;
}
src->last_left = value;
}
void render_put_stereo_sample(audio_source *src, int16_t left, int16_t right)
{
left = lowpass_sample(src, src->last_left, left);
right = lowpass_sample(src, src->last_right, right);
src->buffer_fraction += src->buffer_inc;
uint32_t base = render_is_audio_sync() ? 0 : src->read_end;
while (src->buffer_fraction > BUFFER_INC_RES)
{
src->buffer_fraction -= BUFFER_INC_RES;
interp_sample(src, src->last_left, left);
interp_sample(src, src->last_right, right);
if (((src->buffer_pos - base) & src->mask)/2 >= sync_samples) {
render_do_audio_ready(src);
}
src->buffer_pos &= src->mask;
}
src->last_left = left;
src->last_right = right;
}
static void update_source(audio_source *src, double rc, uint8_t sync_changed)
{
double alpha = src->dt / (src->dt + rc);
int32_t lowpass_alpha = (int32_t)(((double)0x10000) * alpha);
src->lowpass_alpha = lowpass_alpha;
if (sync_changed) {
uint32_t alloc_size = render_is_audio_sync() ? src->num_channels * buffer_samples : nearest_pow2(render_min_buffered() * 4 * src->num_channels);
src->back = realloc(src->back, alloc_size * sizeof(int16_t));
if (render_is_audio_sync()) {
src->front = malloc(alloc_size * sizeof(int16_t));
} else {
free(src->front);
src->front = src->back;
}
src->mask = render_is_audio_sync() ? 0xFFFFFFFF : alloc_size-1;
src->read_start = 0;
src->read_end = render_is_audio_sync() ? buffer_samples * src->num_channels : 0;
src->buffer_pos = 0;
}
}
uint8_t old_audio_sync;
void render_audio_initialized(render_audio_format format, uint32_t rate, uint8_t channels, uint32_t buffer_size, int sample_size_in)
{
sample_rate = rate;
output_channels = channels;
buffer_samples = buffer_size;
sample_size = sample_size_in;
if (mix_buf) {
free(mix_buf);
mix_buf = NULL;
}
switch(format)
{
case RENDER_AUDIO_S16:
convert = convert_s16;
mix_buf = calloc(output_channels * buffer_samples, sizeof(float));
break;
case RENDER_AUDIO_FLOAT:
convert = clamp_f32;
break;
case RENDER_AUDIO_UNKNOWN:
convert = convert_null;
mix_buf = calloc(output_channels * buffer_samples, sizeof(float));
break;
}
uint32_t syncs = render_audio_syncs_per_sec();
if (syncs) {
sync_samples = rate / syncs;
} else {
sync_samples = buffer_samples;
}
char * gain_str = tern_find_path(config, "audio\0gain\0", TVAL_PTR).ptrval;
overall_gain_mult = db_to_mult(gain_str ? atof(gain_str) : 0.0f);
uint8_t sync_changed = old_audio_sync != render_is_audio_sync();
old_audio_sync = render_is_audio_sync();
double lowpass_cutoff = get_lowpass_cutoff(config);
double rc = (1.0 / lowpass_cutoff) / (2.0 * M_PI);
render_lock_audio();
for (uint8_t i = 0; i < num_audio_sources; i++)
{
update_source(audio_sources[i], rc, sync_changed);
}
render_unlock_audio();
for (uint8_t i = 0; i < num_inactive_audio_sources; i++)
{
update_source(inactive_audio_sources[i], rc, sync_changed);
}
}
|