1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
import datetime
import numbers
from functools import partial
from .feature import Feature
from typing import TYPE_CHECKING, Union, Optional
if TYPE_CHECKING:
from .box import Box
class SensorFactory:
device_constructors: dict[str, type] = {}
@classmethod
def register(cls, sensor_type: str, **kwargs):
if sensor_type in cls.device_constructors:
raise RuntimeError("Can't register same sensor type twice")
def decorator(registrable: type):
constructor = registrable
if kwargs:
constructor = partial(registrable, sensor_type=sensor_type, **kwargs)
cls.device_constructors[sensor_type] = constructor
# note: returning unmodified, so we can register registrable
# multiple times under different names and with different kwargs
return registrable
return decorator
@staticmethod
def _sensor_states(extended_state: dict):
"""Read potential sensor states from extended state dictionary"""
# note: probably we should iterate extended state in future if there
# are other api flavours other than multiSensor that provide sensors
states = extended_state.get("multiSensor", {}).get("sensors", [])
# note: but for now we are only able to support non-multisensor devices
# that provide sensor data in extended data payload root
states.extend(extended_state.get("sensors", []))
# note: power measuring feature predates multiSensor API, so we need a small
# shim to adapt older shape of power measuring schema to the new sensor API
if "powerMeasuring" in extended_state:
power_states = extended_state["powerMeasuring"].get("powerConsumption", [])
# note: be careful of names as this has been historically named differently
# in home-assistant
states.extend({"type": "powerConsumption", **s} for s in power_states)
return states
@classmethod
def many_from_config(cls, product, box_type_config, extended_state):
if extended_state:
object_list = []
# note: first item was historically an alias, but it has been since
# abandoned. We still keep it in the box config.
_, methods = box_type_config[0]
for sensor in cls._sensor_states(extended_state):
device_class = sensor.get("type")
sensor_id = sensor.get("id")
alias = device_class
if sensor_id is not None:
alias = f"{device_class}_{sensor_id}"
if constructor := cls.device_constructors.get(device_class):
# note: methods for sensor readings are provided as template
# functions (lambdas) in the box config. We need to "materialize"
# them to make sure they are properly indexed by sensor ID
materialized_methods = {
**methods,
device_class: methods[device_class](sensor_id),
}
feature = constructor(
product=product,
alias=alias,
methods=materialized_methods,
sensor_id=sensor_id,
)
object_list.append(feature)
return object_list
# legacy handling of some old device API that do not provide extended state
alias, methods = box_type_config[0]
if alias.endswith("air"):
method_list = [method for method in methods if "value" in method]
return [
AirQuality(product=product, alias=method.split(".")[0], methods=methods)
for method in method_list
]
if alias.endswith("temperature"):
return [Temperature(product=product, alias=alias, methods=methods)]
else:
return []
class BaseSensor(Feature):
_unit: str
_device_class: str
_native_value: Union[float, int, str]
_sensor_type: Optional[str]
_sensor_id: Optional[int]
def __init__(
self,
product: "Box",
alias: str,
methods: dict,
sensor_type: str = None,
sensor_id: Optional[int] = None,
):
self._sensor_type = sensor_type
self._sensor_id = sensor_id
super().__init__(product, alias, methods)
@property
def unit(self) -> str:
return self._unit
@property
def device_class(self) -> str:
return self._device_class
@property
def native_value(self):
return self._native_value
@property
def sensor_id(self):
return self._sensor_id
@property
def probe_id(self):
return self.sensor_id
@classmethod
def many_from_config(cls, product, box_type_config, extended_state):
raise NotImplementedError("Please use SensorFactory")
def __str__(self):
return f"<{self.__class__.__name__} sensor_type={self._sensor_type}, alias={self._alias}>"
@SensorFactory.register("frequency", unit="Hz", scale=1_000)
@SensorFactory.register("current", unit="mA", scale=1_000)
@SensorFactory.register("voltage", unit="V", scale=10)
@SensorFactory.register("apparentPower", unit="va")
@SensorFactory.register("reactivePower", unit="var")
@SensorFactory.register("activePower", unit="W")
@SensorFactory.register("reverseActiveEnergy", unit="kWh")
@SensorFactory.register("forwardActiveEnergy", unit="kWh")
@SensorFactory.register("illuminance", unit="lx", scale=100)
@SensorFactory.register("humidity", unit="percentage", scale=100)
@SensorFactory.register("wind", unit="m/s", scale=10)
class GenericSensor(BaseSensor):
def __init__(
# base sensor params
self,
product: "Box",
alias: str,
methods: dict,
sensor_id: Optional[int],
*,
# generalization params
sensor_type: str,
unit: str,
scale: float = 1,
precision: Optional[int] = None,
):
super().__init__(product, alias, methods, sensor_id=sensor_id)
self._unit = unit
self._scale = scale
self._precision = precision
# note: this seems redundant but there is at least one sensor type that
# has different mapping in home assistant (wind/wind_speed). Should be
# fixed in upstream first.
self._device_class = sensor_type
self._sensor_type = sensor_type
def after_update(self):
product = self._product
if product.last_data is None:
return
raw = self.raw_value(self._device_class)
if not isinstance(raw, numbers.Number):
raw = float("nan")
native = raw / self._scale
if self._precision:
native = round(native, self._precision)
self._native_value = native
@SensorFactory.register("powerConsumption", unit="kWh")
class PowerConsumption(GenericSensor):
# note: almost the same as typical generic sensor but also provides extra property
# to read last reset value
@property
def last_reset(self):
return datetime.datetime.now() - datetime.timedelta(
seconds=self._read_period_of_measurement()
)
def _read_period_of_measurement(self) -> int:
product = self._product
if product.last_data is not None:
raw = self.raw_value("periodS")
if raw is not None:
alias = self._alias
return product.expect_int(alias, raw, 3600, 0)
return 0
@SensorFactory.register("temperature")
class Temperature(BaseSensor):
_current: Union[float, int, None]
def __init__(
self,
product: "Box",
alias: str,
methods: dict,
sensor_id: Optional[int] = None,
):
super().__init__(product, alias, methods, sensor_id=sensor_id)
self._unit = "celsius"
self._device_class = "temperature"
@property
def current(self) -> Union[float, int, None]:
return self._current
def _read_temperature(self, field: str) -> Union[float, int, None]:
product = self._product
if product.last_data is not None:
raw = self.raw_value(field)
if raw is not None:
alias = self._alias
return round(product.expect_int(alias, raw, 12500, -5500) / 100.0, 1)
return None
def after_update(self) -> None:
self._current = self._read_temperature("temperature")
self._native_value = self._read_temperature("temperature")
@SensorFactory.register("airSensor")
class AirQuality(BaseSensor):
_pm: Optional[int]
def __init__(
self,
product: "Box",
alias: str,
methods: dict,
sensor_id: Optional[str] = None,
):
super().__init__(product, alias, methods, sensor_id)
self._unit = "concentration_of_mp"
self._device_class = alias
def _pm_value(self, name: str) -> Optional[int]:
product = self._product
if product.last_data is not None:
raw = self.raw_value(name)
if raw is not None:
alias = self._alias
return product.expect_int(alias, raw, 3000, 0)
return None
def after_update(self) -> None:
self._native_value = self._pm_value(f"{self.device_class}.value")
|