1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
#!BPY
"""
Name: 'Skin Two Vert-loops / Loft Multiple'
Blender: 234
Group: 'Mesh'
Submenu: 'Loft-loop - shortest edge method' A1
Submenu: 'Loft-loop - even method' A2
Submenu: 'Loft-segment - shortest edge' B1
Submenu: 'Loft-segment - even method' B2
Tooltip: 'Select 2 or more vert loops, then run this script'
"""
__author__ = "Campbell Barton"
__url__ = ["blender", "elysiun"]
__version__ = "1.0 2004/04/25"
__bpydoc__ = """\
With this script vertex loops can be skinned: faces are created to connect the
selected loops of vertices.
Usage:
In mesh Edit mode select the vertices of the loops (closed paths / curves of
vertices: circles, for example) that should be skinned, then run this script.
A pop-up will provide further options, if the results of a method are not adequate try one of the others.
"""
# $Id: skin.py,v 1.2 2004/11/07 16:31:13 ianwill Exp $
#
# --------------------------------------------------------------------------
# Skin Selected edges 1.0 By Campbell Barton (AKA Ideasman)
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
# Made by Ideasman/Campbell 2004/04/25 - ideasman@linuxmail.org
import Blender
from Blender import *
import math
from math import *
arg = __script__['arg']
#================#
# Math functions #
#================#
# Measure 2 points
def measure(v1, v2):
return Mathutils.Vector([v1[0]-v2[0], v1[1] - v2[1], v1[2] - v2[2]]).length
# Clamp
def clamp(max, number):
while number >= max:
number = number - max
return number
#=============================================================#
# List func that takes the last item and adds it to the front #
#=============================================================#
def listRotate(ls):
return [ls[-1]] + ls[:-1]
#=================================================================#
# Recieve a list of locs: [x,y,z] and return the average location #
#=================================================================#
def averageLocation(locList):
avLoc = [0,0,0]
# Loop through x/y/z
for coordIdx in [0,1,2]:
# Add all the values from 1 of the 3 coords at the avLoc.
for loc in locList:
avLoc[coordIdx] += loc[coordIdx]
avLoc[coordIdx] = avLoc[coordIdx] / len(locList)
return avLoc
#=============================#
# Blender functions/shortcuts #
#=============================#
def error(str):
Draw.PupMenu('ERROR%t|'+str)
# Returns a new face that has the same properties as the origional face
# With no verts though
def copyFace(face):
newFace = NMesh.Face()
# Copy some generic properties
newFace.mode = face.mode
if face.image != None:
newFace.image = face.image
newFace.flag = face.flag
newFace.mat = face.mat
newFace.smooth = face.smooth
return newFace
#=============================================#
# Find a selected vert that 2 faces share. #
#=============================================#
def selVertBetween2Faces(face1, face2):
for v1 in face1.v:
if v1.sel:
for v2 in face2.v:
if v1 == v2:
return v1
#=======================================================#
# Measure the total distance between all the edges in #
# 2 vertex loops #
#=======================================================#
def measureVloop(mesh, v1loop, v2loop, surplusFaces):
totalDist = 0
# Rotate the vertloops to cycle through each pair.
# of faces to compate the distance between the 2 poins
for ii in range(len(v1loop)):
if ii not in surplusFaces:
V1 = selVertBetween2Faces(mesh.faces[v1loop[0]], mesh.faces[v1loop[1]])
V2 = selVertBetween2Faces(mesh.faces[v2loop[0]], mesh.faces[v2loop[1]])
P1 = (V1[0],V1[1],V1[2])
P2 = (V2[0],V2[1],V2[2])
totalDist += measure(P1,P2)
v1loop = listRotate(v1loop)
v2loop = listRotate(v2loop)
#selVertBetween2Faces(mesh.faces[v2loop[0]], mesh.faces[v2loop[1]])
return totalDist
# Remove the shortest edge from a vert loop
def removeSmallestFace(mesh, vloop):
bestDistSoFar = None
bestFIdxSoFar = None
for fIdx in vloop:
vSelLs = []
for v in mesh.faces[fIdx].v:
if v.sel:
vSelLs.append(v)
dist = measure(vSelLs[0].co, vSelLs[1].co)
if bestDistSoFar == None:
bestDistSoFar = dist
bestFIdxSoFar = fIdx
elif dist < bestDistSoFar:
bestDistSoFar = dist
bestFIdxSoFar = fIdx
# Return the smallest face index of the vloop that was sent
return bestFIdxSoFar
#=============================================#
# Take 2 vert loops and skin them #
#=============================================#
def skinVertLoops(mesh, v1loop, v2loop):
#=============================================#
# Handle uneven vert loops, this is tricky #
#=============================================#
# Reorder so v1loop is always the biggest
if len(v1loop) < len(v2loop):
v1loop, v2loop = v2loop, v1loop
# Work out if the vert loops are equel or not, if not remove the extra faces from the larger
surplusFaces = []
tempv1loop = eval(str(v1loop)) # strip faces off this one, use it to keep track of which we have taken faces from.
if len(v1loop) > len(v2loop):
# Even face method.
if arg[1] == '2':
remIdx = 0
faceStepping = len( v1loop) / len(v2loop)
while len(v1loop) - len(surplusFaces) > len(v2loop):
remIdx += faceStepping
surplusFaces.append(tempv1loop[ clamp(len(tempv1loop),remIdx) ])
tempv1loop.remove(surplusFaces[-1])
# Shortest face
elif arg[1] == '1':
while len(v1loop) - len(surplusFaces) > len(v2loop):
surplusFaces.append(removeSmallestFace(mesh, tempv1loop))
tempv1loop.remove(surplusFaces[-1])
tempv1loop = None
v2loop = optimizeLoopOrdedShortEdge(mesh, v1loop, v2loop, surplusFaces)
# make Faces from
lenVloop = len(v1loop)
lenSupFaces = len(surplusFaces)
fIdx = 0
offset = 0
while fIdx < lenVloop:
face = copyFace( mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]] )
if v1loop[fIdx] in surplusFaces:
# Draw a try, this face does not catch with an edge.
# So we must draw a tri and wedge it in.
# Copy old faces properties
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+2)]]) )
#face.v.append( selVertBetween2Faces(\
#mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset +1 ))]],\
#mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset + 2))]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, fIdx - offset + 1)]]) )
mesh.faces.append(face)
# We need offset to work out how much smaller v2loop is at this current index.
offset+=1
else:
# Draw a normal quad between the 2 edges/faces
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+2)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset +1 ))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset + 2))]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, fIdx - offset + 1)]]) )
mesh.faces.append(face)
fIdx +=1
return mesh
#=======================================================#
# Takes a face and returns the number of selected verts #
#=======================================================#
def faceVSel(face):
vSel = 0
for v in face.v:
if v.sel:
vSel +=1
return vSel
#================================================================#
# This function takes a face and returns its selected vert loop #
# it returns a list of face indicies
#================================================================#
def vertLoop(mesh, startFaceIdx, fIgLs): # fIgLs is a list of faces to ignore.
# Here we store the faces indicies that
# are a part of the first vertex loop
vertLoopLs = [startFaceIdx]
restart = 0
while restart == 0:
# this keeps the face loop going until its told to stop,
# If the face loop does not find an adjacent face then the vert loop has been compleated
restart = 1
# Get my selected verts for the active face/edge.
selVerts = []
for v in mesh.faces[vertLoopLs[-1]].v:
selVerts.append(v)
fIdx = 0
while fIdx < len(mesh.faces) and restart:
# Not already added to the vert list
if fIdx not in fIgLs + vertLoopLs:
# Has 2 verts selected
if faceVSel(mesh.faces[fIdx]) > 1:
# Now we need to find if any of the selected verts
# are shared with our active face. (are we next to ActiveFace)
for v in mesh.faces[fIdx].v:
if v in selVerts:
vertLoopLs.append(fIdx)
restart = 0 # restart the face loop.
break
fIdx +=1
return vertLoopLs
#================================================================#
# Now we work out the optimum order to 'skin' the 2 vert loops #
# by measuring the total distance of all edges created, #
# test this for every possible series of joins #
# and find the shortest, Once this is done the #
# shortest dist can be skinned. #
# returns only the 2nd-reordered vert loop #
#================================================================#
def optimizeLoopOrded(mesh, v1loop, v2loop):
bestSoFar = None
# Measure the dist, ii is just a counter
for ii in range(len(v1loop)):
# Loop twice , Once for the forward test, and another for the revearsed
for iii in [0, 0]:
dist = measureVloop(mesh, v1loop, v2loop)
# Initialize the Best distance recorded
if bestSoFar == None:
bestSoFar = dist
bestv2Loop = eval(str(v2loop))
elif dist < bestSoFar: # Update the info if a better vloop rotation is found.
bestSoFar = dist
bestv2Loop = eval(str(v2loop))
# We might have got the vert loop backwards, try the other way
v2loop.reverse()
v2loop = listRotate(v2loop)
return bestv2Loop
#================================================================#
# Now we work out the optimum order to 'skin' the 2 vert loops #
# by measuring the total distance of all edges created, #
# test this for every possible series of joins #
# and find the shortest, Once this is done the #
# shortest dist can be skinned. #
# returns only the 2nd-reordered vert loop #
#================================================================#
def optimizeLoopOrdedShortEdge(mesh, v1loop, v2loop, surplusFaces):
bestSoFar = None
# Measure the dist, ii is just a counter
for ii in range(len(v2loop)):
# Loop twice , Once for the forward test, and another for the revearsed
for iii in [0, 0]:
dist = measureVloop(mesh, v1loop, v2loop, surplusFaces)
print 'dist', dist
# Initialize the Best distance recorded
if bestSoFar == None:
bestSoFar = dist
bestv2Loop = eval(str(v2loop))
elif dist < bestSoFar: # Update the info if a better vloop rotation is found.
bestSoFar = dist
bestv2Loop = eval(str(v2loop))
# We might have got the vert loop backwards, try the other way
v2loop.reverse()
v2loop = listRotate(v2loop)
print 'best so far ', bestSoFar
return bestv2Loop
#==============================#
# Find our vert loop list #
#==============================#
# Find a face with 2 verts selected,
#this will be the first face in out vert loop
def findVertLoop(mesh, fIgLs): # fIgLs is a list of faces to ignore.
startFaceIdx = None
fIdx = 0
while fIdx < len(mesh.faces):
if fIdx not in fIgLs:
# Do we have an edge?
if faceVSel(mesh.faces[fIdx]) > 1:
# THIS IS THE STARTING FACE.
startFaceIdx = fIdx
break
fIdx+=1
# Here we access the function that generates the real vert loop
if startFaceIdx != None:
return vertLoop(mesh, startFaceIdx, fIgLs)
else:
# We are out'a vert loops, return a None,
return None
#===================================#
# Get the average loc of a vertloop #
# This is used when working out the #
# order to loft an object #
#===================================#
def vLoopAverageLoc(mesh, vertLoop):
locList = [] # List of vert locations
fIdx = 0
while fIdx < len(mesh.faces):
if fIdx in vertLoop:
for v in mesh.faces[fIdx].v:
if v.sel:
locList.append(v.co)
fIdx+=1
return averageLocation(locList)
#=================================================#
# Vert loop group functions
def getAllVertLoops(mesh):
# Make a chain of vert loops.
fIgLs = [] # List of faces to ignore
allVLoops = [findVertLoop(mesh, fIgLs)]
while allVLoops[-1] != None:
# In future ignore all faces in this vert loop
fIgLs += allVLoops[-1]
# Add the new vert loop to the list
allVLoops.append( findVertLoop(mesh, fIgLs) )
return allVLoops[:-1] # Remove the last Value- None.
def reorderCircularVLoops(mesh, allVLoops):
# Now get a location for each vert loop.
allVertLoopLocs = []
for vLoop in allVLoops:
allVertLoopLocs.append( vLoopAverageLoc(mesh, vLoop) )
# We need to find the longest distance between 2 vert loops so we can
reorderedVLoopLocs = []
# Start with this one, then find the next closest.
# in doing this make a new list called reorderedVloop
currentVLoop = 0
reorderedVloopIdx = [currentVLoop]
newOrderVLoops = [allVLoops[0]] # This is a re-ordered allVLoops
while len(reorderedVloopIdx) != len(allVLoops):
bestSoFar = None
bestVIdxSoFar = None
for vLoopIdx in range(len(allVLoops)):
if vLoopIdx not in reorderedVloopIdx + [currentVLoop]:
if bestSoFar == None:
bestSoFar = measure( allVertLoopLocs[vLoopIdx], allVertLoopLocs[currentVLoop] )
bestVIdxSoFar = vLoopIdx
else:
newDist = measure( allVertLoopLocs[vLoopIdx], allVertLoopLocs[currentVLoop] )
if newDist < bestSoFar:
bestSoFar = newDist
bestVIdxSoFar = vLoopIdx
reorderedVloopIdx.append(bestVIdxSoFar)
reorderedVLoopLocs.append(allVertLoopLocs[bestVIdxSoFar])
newOrderVLoops.append( allVLoops[bestVIdxSoFar] )
# Start looking for the next best fit
currentVLoop = bestVIdxSoFar
# This is not the locicle place to put this but its convieneint.
# Here we find the 2 vert loops that are most far apart
# We use this to work out which 2 vert loops not to skin when making an open loft.
vLoopIdx = 0
# Longest measured so far - 0 dummy.
bestSoFar = 0
while vLoopIdx < len(reorderedVLoopLocs):
# Skin back to the start if needs be, becuase this is a crcular loft
toSkin2 = vLoopIdx + 1
if toSkin2 == len(reorderedVLoopLocs):
toSkin2 = 0
newDist = measure( reorderedVLoopLocs[vLoopIdx], reorderedVLoopLocs[toSkin2] )
if newDist >= bestSoFar:
bestSoFar = newDist
vLoopIdxNotToSkin = vLoopIdx + 1
vLoopIdx +=1
return newOrderVLoops, vLoopIdxNotToSkin
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
# Get a mesh and raise errors if we cant
mesh = None
if len(Object.GetSelected()) > 0:
if Object.GetSelected()[0].getType() == 'Mesh':
mesh = Object.GetSelected()[0].getData()
else:
error('please select a mesh')
else:
error('no mesh object selected')
if mesh != None:
allVLoops = getAllVertLoops(mesh)
# Re order the vert loops
allVLoops, vLoopIdxNotToSkin = reorderCircularVLoops(mesh, allVLoops)
vloopIdx = 0
while vloopIdx < len(allVLoops):
#print range(len(allVLoops) )
#print vloopIdx
#print allVLoops[vloopIdx]
# Skin back to the start if needs be, becuase this is a crcular loft
toSkin2 = vloopIdx + 1
if toSkin2 == len(allVLoops):
toSkin2 = 0
# Circular loft or not?
if arg[0] == 'B': # B for open
if vloopIdx != vLoopIdxNotToSkin:
mesh = skinVertLoops(mesh, allVLoops[vloopIdx], allVLoops[toSkin2])
elif arg[0] == 'A': # A for closed
mesh = skinVertLoops(mesh, allVLoops[vloopIdx], allVLoops[toSkin2])
vloopIdx +=1
mesh.update()
if is_editmode: Window.EditMode(1)
|