1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
/**
* Set random/camera stuff
*
* $Id: SCA_RandomActuator.cpp,v 1.9 2005/03/09 19:45:59 lukep Exp $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "BoolValue.h"
#include "IntValue.h"
#include "FloatValue.h"
#include "SCA_IActuator.h"
#include "SCA_RandomActuator.h"
#include "math.h"
#include "MT_Transform.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
SCA_RandomActuator::SCA_RandomActuator(SCA_IObject *gameobj,
long seed,
SCA_RandomActuator::KX_RANDOMACT_MODE mode,
float para1,
float para2,
const STR_String &propName,
PyTypeObject* T)
: SCA_IActuator(gameobj, T),
m_propname(propName),
m_parameter1(para1),
m_parameter2(para2),
m_distribution(mode)
{
m_base = new SCA_RandomNumberGenerator(seed);
m_counter = 0;
enforceConstraints();
}
SCA_RandomActuator::~SCA_RandomActuator()
{
/* intentionally empty */
}
CValue* SCA_RandomActuator::GetReplica()
{
SCA_RandomActuator* replica = new SCA_RandomActuator(*this);
replica->ProcessReplica();
CValue::AddDataToReplica(replica);
return replica;
}
bool SCA_RandomActuator::Update()
{
//bool result = false; /*unused*/
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
CValue *tmpval = NULL;
if (bNegativeEvent)
return false; // do nothing on negative events
switch (m_distribution) {
case KX_RANDOMACT_BOOL_CONST: {
/* un petit peu filthy */
bool res = !(m_parameter1 < 0.5);
tmpval = new CBoolValue(res);
}
break;
case KX_RANDOMACT_BOOL_UNIFORM: {
/* flip a coin */
bool res;
if (m_counter > 31) {
m_previous = m_base->Draw();
res = ((m_previous & 0x1) == 0);
m_counter = 1;
} else {
res = (((m_previous >> m_counter) & 0x1) == 0);
m_counter++;
}
tmpval = new CBoolValue(res);
}
break;
case KX_RANDOMACT_BOOL_BERNOUILLI: {
/* 'percentage' */
bool res;
res = (m_base->DrawFloat() < m_parameter1);
tmpval = new CBoolValue(res);
}
break;
case KX_RANDOMACT_INT_CONST: {
/* constant */
tmpval = new CIntValue((int) floor(m_parameter1));
}
break;
case KX_RANDOMACT_INT_UNIFORM: {
/* uniform (toss a die) */
int res;
/* The [0, 1] interval is projected onto the [min, max+1] domain, */
/* and then rounded. */
res = (int) floor( ((m_parameter2 - m_parameter1 + 1) * m_base->DrawFloat())
+ m_parameter1);
tmpval = new CIntValue(res);
}
break;
case KX_RANDOMACT_INT_POISSON: {
/* poisson (queues) */
/* If x_1, x_2, ... is a sequence of random numbers with uniform */
/* distribution between zero and one, k is the first integer for */
/* which the product x_1*x_2*...*x_k < exp(-\lamba). */
float a = 0.0, b = 0.0;
int res = 0;
/* The - sign is important here! The number to test for, a, must be */
/* between 0 and 1. */
a = exp(-m_parameter1);
/* a quickly reaches 0.... so we guard explicitly for that. */
if (a < FLT_MIN) a = FLT_MIN;
b = m_base->DrawFloat();
while (b >= a) {
b = b * m_base->DrawFloat();
res++;
};
tmpval = new CIntValue(res);
}
break;
case KX_RANDOMACT_FLOAT_CONST: {
/* constant */
tmpval = new CFloatValue(m_parameter1);
}
break;
case KX_RANDOMACT_FLOAT_UNIFORM: {
float res = ((m_parameter2 - m_parameter1) * m_base->DrawFloat())
+ m_parameter1;
tmpval = new CFloatValue(res);
}
break;
case KX_RANDOMACT_FLOAT_NORMAL: {
/* normal (big numbers): para1 = mean, para2 = std dev */
/*
070301 - nzc - Changed the termination condition. I think I
made a small mistake here, but it only affects distro's where
the seed equals 0. In that case, the algorithm locks. Let's
just guard that case separately.
*/
float x = 0.0, y = 0.0, s = 0.0, t = 0.0;
if (m_base->GetSeed() == 0) {
/*
070301 - nzc
Just taking the mean here seems reasonable.
*/
tmpval = new CFloatValue(m_parameter1);
} else {
/*
070301 - nzc
Now, with seed != 0, we will most assuredly get some
sensible values. The termination condition states two
things:
1. s >= 0 is not allowed: to prevent the distro from
getting a bias towards high values. This is a small
correction, really, and might also be left out.
2. s == 0 is not allowed: to prevent a division by zero
when renormalising the drawn value to the desired
distribution shape. As a side effect, the distro will
never yield the exact mean.
I am not sure whether this is consistent, since the error
cause by #2 is of the same magnitude as the one
prevented by #1. The error introduced into the SD will be
improved, though. By how much? Hard to say... If you like
the maths, feel free to analyse. Be aware that this is
one of the really old standard algorithms. I think the
original came in Fortran, was translated to Pascal, and
then someone came up with the C code. My guess it that
this will be quite sufficient here.
*/
do
{
x = 2.0 * m_base->DrawFloat() - 1.0;
y = 2.0 * m_base->DrawFloat() - 1.0;
s = x*x + y*y;
} while ( (s >= 1.0) || (s == 0.0) );
t = x * sqrt( (-2.0 * log(s)) / s);
tmpval = new CFloatValue(m_parameter1 + m_parameter2 * t);
}
}
break;
case KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL: {
/* 1st order fall-off. I am very partial to using the half-life as */
/* controlling parameter. Using the 'normal' exponent is not very */
/* intuitive... */
/* tmpval = new CFloatValue( (1.0 / m_parameter1) */
tmpval = new CFloatValue( (m_parameter1)
* (-log(1.0 - m_base->DrawFloat())) );
}
break;
default:
{
/* unknown distribution... */
static bool randomWarning = false;
if (!randomWarning) {
randomWarning = true;
std::cout << "RandomActuator '" << GetName() << "' has an unknown distribution." << std::endl;
}
return false;
}
}
/* Round up: assign it */
CValue *prop = GetParent()->GetProperty(m_propname);
if (prop) {
prop->SetValue(tmpval);
}
tmpval->Release();
return false;
}
void SCA_RandomActuator::enforceConstraints() {
/* The constraints that are checked here are the ones fundamental to */
/* the various distributions. Limitations of the algorithms are checked */
/* elsewhere (or they should be... ). */
switch (m_distribution) {
case KX_RANDOMACT_BOOL_CONST:
case KX_RANDOMACT_BOOL_UNIFORM:
case KX_RANDOMACT_INT_CONST:
case KX_RANDOMACT_INT_UNIFORM:
case KX_RANDOMACT_FLOAT_UNIFORM:
case KX_RANDOMACT_FLOAT_CONST:
; /* Nothing to be done here. We allow uniform distro's to have */
/* 'funny' domains, i.e. max < min. This does not give problems. */
break;
case KX_RANDOMACT_BOOL_BERNOUILLI:
/* clamp to [0, 1] */
if (m_parameter1 < 0.0) {
m_parameter1 = 0.0;
} else if (m_parameter1 > 1.0) {
m_parameter1 = 1.0;
}
break;
case KX_RANDOMACT_INT_POISSON:
/* non-negative */
if (m_parameter1 < 0.0) {
m_parameter1 = 0.0;
}
break;
case KX_RANDOMACT_FLOAT_NORMAL:
/* standard dev. is non-negative */
if (m_parameter2 < 0.0) {
m_parameter2 = 0.0;
}
break;
case KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL:
/* halflife must be non-negative */
if (m_parameter1 < 0.0) {
m_parameter1 = 0.0;
}
break;
default:
; /* unknown distribution... */
}
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject SCA_RandomActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"SCA_RandomActuator",
sizeof(SCA_RandomActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject SCA_RandomActuator::Parents[] = {
&SCA_RandomActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef SCA_RandomActuator::Methods[] = {
{"setSeed", (PyCFunction) SCA_RandomActuator::sPySetSeed, METH_VARARGS, SetSeed_doc},
{"getSeed", (PyCFunction) SCA_RandomActuator::sPyGetSeed, METH_VARARGS, GetSeed_doc},
{"getPara1", (PyCFunction) SCA_RandomActuator::sPyGetPara1, METH_VARARGS, GetPara1_doc},
{"getPara2", (PyCFunction) SCA_RandomActuator::sPyGetPara2, METH_VARARGS, GetPara2_doc},
{"getDistribution", (PyCFunction) SCA_RandomActuator::sPyGetDistribution, METH_VARARGS, GetDistribution_doc},
{"setProperty", (PyCFunction) SCA_RandomActuator::sPySetProperty, METH_VARARGS, SetProperty_doc},
{"getProperty", (PyCFunction) SCA_RandomActuator::sPyGetProperty, METH_VARARGS, GetProperty_doc},
{"setBoolConst", (PyCFunction) SCA_RandomActuator::sPySetBoolConst, METH_VARARGS, SetBoolConst_doc},
{"setBoolUniform", (PyCFunction) SCA_RandomActuator::sPySetBoolUniform, METH_VARARGS, SetBoolUniform_doc},
{"setBoolBernouilli",(PyCFunction) SCA_RandomActuator::sPySetBoolBernouilli, METH_VARARGS, SetBoolBernouilli_doc},
{"setIntConst", (PyCFunction) SCA_RandomActuator::sPySetIntConst, METH_VARARGS, SetIntConst_doc},
{"setIntUniform", (PyCFunction) SCA_RandomActuator::sPySetIntUniform, METH_VARARGS, SetIntUniform_doc},
{"setIntPoisson", (PyCFunction) SCA_RandomActuator::sPySetIntPoisson, METH_VARARGS, SetIntPoisson_doc},
{"setFloatConst", (PyCFunction) SCA_RandomActuator::sPySetFloatConst, METH_VARARGS, SetFloatConst_doc},
{"setFloatUniform", (PyCFunction) SCA_RandomActuator::sPySetFloatUniform, METH_VARARGS, SetFloatUniform_doc},
{"setFloatNormal", (PyCFunction) SCA_RandomActuator::sPySetFloatNormal, METH_VARARGS, SetFloatNormal_doc},
{"setFloatNegativeExponential", (PyCFunction) SCA_RandomActuator::sPySetFloatNegativeExponential, METH_VARARGS, SetFloatNegativeExponential_doc},
{NULL,NULL} //Sentinel
};
PyObject* SCA_RandomActuator::_getattr(const STR_String& attr) {
_getattr_up(SCA_IActuator);
}
/* 1. setSeed */
char SCA_RandomActuator::SetSeed_doc[] =
"setSeed(seed)\n"
"\t- seed: integer\n"
"\tSet the initial seed of the generator. Equal seeds produce\n"
"\tequal series. If the seed is 0, the generator will produce\n"
"\tthe same value on every call.\n";
PyObject* SCA_RandomActuator::PySetSeed(PyObject* self, PyObject* args, PyObject* kwds) {
long seedArg;
if(!PyArg_ParseTuple(args, "i", &seedArg)) {
return NULL;
}
m_base->SetSeed(seedArg);
Py_Return;
}
/* 2. getSeed */
char SCA_RandomActuator::GetSeed_doc[] =
"getSeed()\n"
"\tReturns the initial seed of the generator. Equal seeds produce\n"
"\tequal series.\n";
PyObject* SCA_RandomActuator::PyGetSeed(PyObject* self, PyObject* args, PyObject* kwds) {
return PyInt_FromLong(m_base->GetSeed());
}
/* 4. getPara1 */
char SCA_RandomActuator::GetPara1_doc[] =
"getPara1()\n"
"\tReturns the first parameter of the active distribution. Refer\n"
"\tto the documentation of the generator types for the meaning\n"
"\tof this value.";
PyObject* SCA_RandomActuator::PyGetPara1(PyObject* self, PyObject* args, PyObject* kwds) {
return PyFloat_FromDouble(m_parameter1);
}
/* 6. getPara2 */
char SCA_RandomActuator::GetPara2_doc[] =
"getPara2()\n"
"\tReturns the first parameter of the active distribution. Refer\n"
"\tto the documentation of the generator types for the meaning\n"
"\tof this value.";
PyObject* SCA_RandomActuator::PyGetPara2(PyObject* self, PyObject* args, PyObject* kwds) {
return PyFloat_FromDouble(m_parameter2);
}
/* 8. getDistribution */
char SCA_RandomActuator::GetDistribution_doc[] =
"getDistribution()\n"
"\tReturns the type of the active distribution.\n";
PyObject* SCA_RandomActuator::PyGetDistribution(PyObject* self, PyObject* args, PyObject* kwds) {
return PyInt_FromLong(m_distribution);
}
/* 9. setProperty */
char SCA_RandomActuator::SetProperty_doc[] =
"setProperty(name)\n"
"\t- name: string\n"
"\tSet the property to which the random value is assigned. If the \n"
"\tgenerator and property types do not match, the assignment is ignored.\n";
PyObject* SCA_RandomActuator::PySetProperty(PyObject* self, PyObject* args, PyObject* kwds) {
char *nameArg;
if (!PyArg_ParseTuple(args, "s", &nameArg)) {
return NULL;
}
CValue* prop = GetParent()->FindIdentifier(nameArg);
if (prop) {
m_propname = nameArg;
prop->Release();
} else {
; /* not found ... */
}
Py_Return;
}
/* 10. getProperty */
char SCA_RandomActuator::GetProperty_doc[] =
"getProperty(name)\n"
"\tReturn the property to which the random value is assigned. If the \n"
"\tgenerator and property types do not match, the assignment is ignored.\n";
PyObject* SCA_RandomActuator::PyGetProperty(PyObject* self, PyObject* args, PyObject* kwds) {
return PyString_FromString(m_propname);
}
/* 11. setBoolConst */
char SCA_RandomActuator::SetBoolConst_doc[] =
"setBoolConst(value)\n"
"\t- value: 0 or 1\n"
"\tSet this generator to produce a constant boolean value.\n";
PyObject* SCA_RandomActuator::PySetBoolConst(PyObject* self,
PyObject* args,
PyObject* kwds) {
int paraArg;
if(!PyArg_ParseTuple(args, "i", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_BOOL_CONST;
if (paraArg) {
m_parameter1 = 1;
}
Py_Return;
}
/* 12. setBoolUniform, */
char SCA_RandomActuator::SetBoolUniform_doc[] =
"setBoolUniform()\n"
"\tSet this generator to produce true and false, each with 50%% chance of occuring\n";
PyObject* SCA_RandomActuator::PySetBoolUniform(PyObject* self,
PyObject* args,
PyObject* kwds) {
/* no args */
m_distribution = KX_RANDOMACT_BOOL_UNIFORM;
enforceConstraints();
Py_Return;
}
/* 13. setBoolBernouilli, */
char SCA_RandomActuator::SetBoolBernouilli_doc[] =
"setBoolBernouilli(value)\n"
"\t- value: a float between 0 and 1\n"
"\tReturn false value * 100%% of the time.\n";
PyObject* SCA_RandomActuator::PySetBoolBernouilli(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg;
if(!PyArg_ParseTuple(args, "f", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_BOOL_BERNOUILLI;
m_parameter1 = paraArg;
enforceConstraints();
Py_Return;
}
/* 14. setIntConst,*/
char SCA_RandomActuator::SetIntConst_doc[] =
"setIntConst(value)\n"
"\t- value: integer\n"
"\tAlways return value\n";
PyObject* SCA_RandomActuator::PySetIntConst(PyObject* self,
PyObject* args,
PyObject* kwds) {
int paraArg;
if(!PyArg_ParseTuple(args, "i", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_INT_CONST;
m_parameter1 = paraArg;
enforceConstraints();
Py_Return;
}
/* 15. setIntUniform,*/
char SCA_RandomActuator::SetIntUniform_doc[] =
"setIntUniform(lower_bound, upper_bound)\n"
"\t- lower_bound: integer\n"
"\t- upper_bound: integer\n"
"\tReturn a random integer between lower_bound and\n"
"\tupper_bound. The boundaries are included.\n";
PyObject* SCA_RandomActuator::PySetIntUniform(PyObject* self,
PyObject* args,
PyObject* kwds) {
int paraArg1, paraArg2;
if(!PyArg_ParseTuple(args, "ii", ¶Arg1, ¶Arg2)) {
return NULL;
}
m_distribution = KX_RANDOMACT_INT_UNIFORM;
m_parameter1 = paraArg1;
m_parameter2 = paraArg2;
enforceConstraints();
Py_Return;
}
/* 16. setIntPoisson, */
char SCA_RandomActuator::SetIntPoisson_doc[] =
"setIntPoisson(value)\n"
"\t- value: float\n"
"\tReturn a Poisson-distributed number. This performs a series\n"
"\tof Bernouilli tests with parameter value. It returns the\n"
"\tnumber of tries needed to achieve succes.\n";
PyObject* SCA_RandomActuator::PySetIntPoisson(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg;
if(!PyArg_ParseTuple(args, "f", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_INT_POISSON;
m_parameter1 = paraArg;
enforceConstraints();
Py_Return;
}
/* 17. setFloatConst,*/
char SCA_RandomActuator::SetFloatConst_doc[] =
"setFloatConst(value)\n"
"\t- value: float\n"
"\tAlways return value\n";
PyObject* SCA_RandomActuator::PySetFloatConst(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg;
if(!PyArg_ParseTuple(args, "f", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_FLOAT_CONST;
m_parameter1 = paraArg;
enforceConstraints();
Py_Return;
}
/* 18. setFloatUniform, */
char SCA_RandomActuator::SetFloatUniform_doc[] =
"setFloatUniform(lower_bound, upper_bound)\n"
"\t- lower_bound: float\n"
"\t- upper_bound: float\n"
"\tReturn a random integer between lower_bound and\n"
"\tupper_bound.\n";
PyObject* SCA_RandomActuator::PySetFloatUniform(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg1, paraArg2;
if(!PyArg_ParseTuple(args, "ff", ¶Arg1, ¶Arg2)) {
return NULL;
}
m_distribution = KX_RANDOMACT_FLOAT_UNIFORM;
m_parameter1 = paraArg1;
m_parameter2 = paraArg2;
enforceConstraints();
Py_Return;
}
/* 19. setFloatNormal, */
char SCA_RandomActuator::SetFloatNormal_doc[] =
"setFloatNormal(mean, standard_deviation)\n"
"\t- mean: float\n"
"\t- standard_deviation: float\n"
"\tReturn normal-distributed numbers. The average is mean, and the\n"
"\tdeviation from the mean is characterized by standard_deviation.\n";
PyObject* SCA_RandomActuator::PySetFloatNormal(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg1, paraArg2;
if(!PyArg_ParseTuple(args, "ff", ¶Arg1, ¶Arg2)) {
return NULL;
}
m_distribution = KX_RANDOMACT_FLOAT_NORMAL;
m_parameter1 = paraArg1;
m_parameter2 = paraArg2;
enforceConstraints();
Py_Return;
}
/* 20. setFloatNegativeExponential, */
char SCA_RandomActuator::SetFloatNegativeExponential_doc[] =
"setFloatNegativeExponential(half_life)\n"
"\t- half_life: float\n"
"\tReturn negative-exponentially distributed numbers. The half-life 'time'\n"
"\tis characterized by half_life.\n";
PyObject* SCA_RandomActuator::PySetFloatNegativeExponential(PyObject* self,
PyObject* args,
PyObject* kwds) {
float paraArg;
if(!PyArg_ParseTuple(args, "f", ¶Arg)) {
return NULL;
}
m_distribution = KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL;
m_parameter1 = paraArg;
enforceConstraints();
Py_Return;
}
/* eof */
|