1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
# $Id: BPyMathutils.py,v 1.3 2006/07/13 13:41:26 campbellbarton Exp $
#
# --------------------------------------------------------------------------
# helper functions to be used by other scripts
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
import Blender
from Blender.Mathutils import *
# ------ Mersenne Twister - start
# Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
# Any feedback is very welcome. For any question, comments,
# see http://www.math.keio.ac.jp/matumoto/emt.html or email
# matumoto@math.keio.ac.jp
# The link above is dead, this is the new one:
# http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
# And here the license info, from Mr. Matsumoto's site:
# Until 2001/4/6, MT had been distributed under GNU Public License,
# but after 2001/4/6, we decided to let MT be used for any purpose, including
# commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered
# to be usable freely.
#
# So from the year above (1997), this code is under GPL.
# Period parameters
N = 624
M = 397
MATRIX_A = 0x9908b0dfL # constant vector a
UPPER_MASK = 0x80000000L # most significant w-r bits
LOWER_MASK = 0x7fffffffL # least significant r bits
# Tempering parameters
TEMPERING_MASK_B = 0x9d2c5680L
TEMPERING_MASK_C = 0xefc60000L
def TEMPERING_SHIFT_U(y):
return (y >> 11)
def TEMPERING_SHIFT_S(y):
return (y << 7)
def TEMPERING_SHIFT_T(y):
return (y << 15)
def TEMPERING_SHIFT_L(y):
return (y >> 18)
mt = [] # the array for the state vector
mti = N+1 # mti==N+1 means mt[N] is not initialized
# initializing the array with a NONZERO seed
def sgenrand(seed):
# setting initial seeds to mt[N] using
# the generator Line 25 of Table 1 in
# [KNUTH 1981, The Art of Computer Programming
# Vol. 2 (2nd Ed.), pp102]
global mt, mti
mt = []
mt.append(seed & 0xffffffffL)
for i in xrange(1, N + 1):
mt.append((69069 * mt[i-1]) & 0xffffffffL)
mti = i
# end sgenrand
def genrand():
global mt, mti
mag01 = [0x0L, MATRIX_A]
# mag01[x] = x * MATRIX_A for x=0,1
y = 0
if mti >= N: # generate N words at one time
if mti == N+1: # if sgenrand() has not been called,
sgenrand(4357) # a default initial seed is used
for kk in xrange((N-M) + 1):
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]
for kk in xrange(kk, N):
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK)
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]
mti = 0
y = mt[mti]
mti += 1
y ^= TEMPERING_SHIFT_U(y)
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C
y ^= TEMPERING_SHIFT_L(y)
return ( float(y) / 0xffffffffL ) # reals
#------ Mersenne Twister -- end
""" 2d convexhull
Based from Dinu C. Gherman's work,
modified for Blender/Mathutils by Campell Barton
"""
######################################################################
# Public interface
######################################################################
from Blender.Mathutils import DotVecs
def convexHull(point_list_2d):
"""Calculate the convex hull of a set of vectors
The vectors can be 3 or 4d but only the Xand Y are used.
returns a list of convex hull indicies to the given point list
"""
######################################################################
# Helpers
######################################################################
def _myDet(p, q, r):
"""Calc. determinant of a special matrix with three 2D points.
The sign, "-" or "+", determines the side, right or left,
respectivly, on which the point r lies, when measured against
a directed vector from p to q.
"""
return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y)
def _isRightTurn((p, q, r)):
"Do the vectors pq:qr form a right turn, or not?"
#assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0]
if _myDet(p[0], q[0], r[0]) < 0:
return 1
else:
return 0
# Get a local list copy of the points and sort them lexically.
points = [(p, i) for i, p in enumerate(point_list_2d)]
points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y)))
# Build upper half of the hull.
upper = [points[0], points[1]] # cant remove these.
for i in xrange(len(points)-2):
upper.append(points[i+2])
while len(upper) > 2 and not _isRightTurn(upper[-3:]):
del upper[-2]
# Build lower half of the hull.
points.reverse()
lower = [points.pop(0), points.pop(1)]
for p in points:
lower.append(p)
while len(lower) > 2 and not _isRightTurn(lower[-3:]):
del lower[-2]
# Concatenate both halfs and return.
return [p[1] for ls in (upper, lower) for p in ls]
SMALL_NUM = 0.000001
def lineIntersect2D(v1a, v1b, v2a, v2b):
'''
Do 2 lines intersect, if so where.
If there is an error, the retured X value will be None
the y will be an error code- usefull when debugging.
the first line is (v1a, v1b)
the second is (v2a, v2b)
by Campbell Barton
This function accounts for all known cases of 2 lines ;)
'''
x1,y1= v1a.x, v1a.y
x2,y2= v1b.x, v1b.y
_x1,_y1= v2a.x, v2a.y
_x2,_y2= v2b.x, v2b.y
# Bounding box intersection first.
if min(x1, x2) > max(_x1, _x2) or \
max(x1, x2) < min(_x1, _x2) or \
min(y1, y2) > max(_y1, _y2) or \
max(y1, y2) < min(_y1, _y2):
return None, 100 # Basic Bounds intersection TEST returns false.
# are either of the segments points? Check Seg1
if abs(x1 - x2) + abs(y1 - y2) <= SMALL_NUM:
return None, 101
# are either of the segments points? Check Seg2
if abs(_x1 - _x2) + abs(_y1 - _y2) <= SMALL_NUM:
return None, 102
# Make sure the HOZ/Vert Line Comes first.
if abs(_x1 - _x2) < SMALL_NUM or abs(_y1 - _y2) < SMALL_NUM:
x1, x2, y1, y2, _x1, _x2, _y1, _y2 = _x1, _x2, _y1, _y2, x1, x2, y1, y2
if abs(x2-x1) < SMALL_NUM: # VERTICLE LINE
if abs(_x2-_x1) < SMALL_NUM: # VERTICLE LINE SEG2
return None, 111 # 2 verticle lines dont intersect.
elif abs(_y2-_y1) < SMALL_NUM:
return x1, _y1 # X of vert, Y of hoz. no calculation.
yi = ((_y1 / abs(_x1 - _x2)) * abs(_x2 - x1)) + ((_y2 / abs(_x1 - _x2)) * abs(_x1 - x1))
if yi > max(y1, y2): # New point above seg1's vert line
return None, 112
elif yi < min(y1, y2): # New point below seg1's vert line
return None, 113
return x1, yi # Intersecting.
if abs(y2-y1) < SMALL_NUM: # HOZ LINE
if abs(_y2-_y1) < SMALL_NUM: # HOZ LINE SEG2
return None, 121 # 2 hoz lines dont intersect.
# Can skip vert line check for seg 2 since its covered above.
xi = ((_x1 / abs(_y1 - _y2)) * abs(_y2 - y1)) + ((_x2 / abs(_y1 - _y2)) * abs(_y1 - y1))
if xi > max(x1, x2): # New point right of seg1's hoz line
return None, 112
elif xi < min(x1, x2): # New point left of seg1's hoz line
return None, 113
return xi, y1 # Intersecting.
# Accounted for hoz/vert lines. Go on with both anglular.
b1 = (y2-y1)/(x2-x1)
b2 = (_y2-_y1)/(_x2-_x1)
a1 = y1-b1*x1
a2 = _y1-b2*_x1
if b1 - b2 == 0.0:
return None, 200
xi = - (a1-a2)/(b1-b2)
yi = a1+b1*xi
if (x1-xi)*(xi-x2) >= 0 and (_x1-xi)*(xi-_x2) >= 0 and (y1-yi)*(yi-y2) >= 0 and (_y1-yi)*(yi-_y2)>=0:
return xi, yi
else:
return None, 300
|