1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
'''
# 2D Box packing function used by archimap
# packs any list of 2d boxes into a square and returns a list of packed boxes.
# Example of usage.
import boxpack2d
# Build boxe list.
# the unique ID is not used.
# just the width and height.
boxes2Pack = []
anyUniqueID = 0; w = 2.2; h = 3.8
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 1; w = 4.1; h = 1.2
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 2; w = 5.2; h = 9.2
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 3; w = 8.3; h = 7.3
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 4; w = 1.1; h = 5.1
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 5; w = 2.9; h = 8.1
boxes2Pack.append([anyUniqueID, w,h])
anyUniqueID = 6; w = 4.2; h = 6.2
boxes2Pack.append([anyUniqueID, w,h])
# packedLs is a list of [(anyUniqueID, left, bottom, width, height)...]
packWidth, packHeight, packedLs = boxpack2d.boxPackIter(boxes2Pack)
'''
from Blender import NMesh, Window
# a box packing vert
class vt:
def __init__(self, x,y):
self.x, self.y = x, y
self.free = 15
# Set flags so cant test bottom left of 0/0
#~ BLF = 1; TRF = 2; TLF = 4; BRF = 8
#self.users = [] # A list of boxes.
# Rather then users, store Quadrents
self.blb = self.tlb = self.brb = self.trb = None
# A hack to remember the box() that last intersectec this vert
self.intersectCache = ([], [], [], [])
class vertList:
def __init__(self, verts=[]):
self.verts = verts
def sortCorner(self,w,h):
'''
Sorts closest first. - uses the box w/h as a bias,
this makes it so its less likely to have lots of poking out bits
that use too much
Lambada based sort
'''
self.verts.sort(lambda A, B: cmp(max(A.x+w, A.y+h) , max(B.x+w, B.y+h))) # Reverse area sort
class box:
def __init__(self, width, height, id=None):
self.id= id
self.area = width * height # real area
self.farea = width + height # fake area
#self.farea = float(min(width, height)) / float(max(width, height)) # fake area
self.width = width
self.height = height
# Append 4 new verts
# (BL,TR,TL,BR) / 0,1,2,3
self.v=v= [vt(0,0), vt(width,height), vt(0,height), vt(width,0)]
# Set the interior quadrents as used.
v[0].free &= ~TRF
v[1].free &= ~BLF
v[2].free &= ~BRF
v[3].free &= ~TLF
#for v in self.v:
# v.users.append(self)
v[0].trb = self
v[1].blb = self
v[2].brb = self
v[3].tlb = self
def updateV34(self):
'''
Updates verts 3 & 4 from 1 and 2
since 3 and 4 are only there foill need is resizing/ rotating of patterns on the fly while I painr new box placement
but may be merged later with other verts
'''
self.v[TL].x = self.v[BL].x
self.v[TL].y = self.v[TR].y
self.v[BR].x = self.v[TR].x
self.v[BR].y = self.v[BL].y
def setLeft(self, lft):
self.v[TR].x = lft + self.v[TR].x - self.v[BL].x
self.v[BL].x = lft
# update othere verts
self.updateV34()
def setRight(self, rgt):
self.v[BL].x = rgt - (self.v[TR].x - self.v[BL].x)
self.v[TR].x = rgt
self.updateV34()
def setBottom(self, btm):
self.v[TR].y = btm + self.v[TR].y - self.v[BL].y
self.v[BL].y = btm
self.updateV34()
def setTop(self, tp):
self.v[BL].y = tp - (self.v[TR].y - self.v[BL].y)
self.v[TR].y = tp
self.updateV34()
def getLeft(self):
return self.v[BL].x
def getRight(self):
return self.v[TR].x
def getBottom(self):
return self.v[BL].y
def getTop(self):
return self.v[TR].y
def overlapAll(self, boxLs, intersectCache): # Flag index lets us know which quadere
''' Returns none, meaning it didnt overlap any new boxes '''
v= self.v
if v[BL].x < 0:
return None
elif v[BL].y < 0:
return None
else:
bIdx = len(intersectCache)
while bIdx:
bIdx-=1
b = intersectCache[bIdx]
if not (self.v[TR].y <= b.v[BL].y or\
v[BL].y >= b.v[TR].y or\
v[BL].x >= b.v[TR].x or\
v[TR].x <= b.v[BL].x ):
return None # Intersection with existing box
#return 0 # Must keep looking
for b in boxLs.boxes:
if not (v[TR].y <= b.v[BL].y or\
v[BL].y >= b.v[TR].y or\
v[BL].x >= b.v[TR].x or\
v[TR].x <= b.v[BL].x ):
return b # Intersection with new box.
return 0
def place(self, vert, quad):
if quad == BLF:
self.setLeft(vert.x)
self.setBottom(vert.y)
elif quad == TRF:
self.setRight(vert.x)
self.setBottom(vert.y)
elif quad == TLF:
self.setLeft(vert.x)
self.setTop(vert.y)
elif quad == BRF:
self.setRight(vert.x)
self.setTop(vert.y)
# Trys to lock a box onto another box's verts
# cleans up double verts after
def tryVert(self, boxes, baseVert):
flagIndex = -1
for freeQuad in quadFlagLs:
flagIndex +=1
#print 'Testing ', self.width
if baseVert.free & freeQuad:
self.place(baseVert, freeQuad)
overlapBox = self.overlapAll(boxes, baseVert.intersectCache[flagIndex])
if overlapBox is 0: # There is no overlap
baseVert.free &= ~freeQuad # Removes quad
# Appends all verts but the one that matches. this removes the need for remove doubles
for vIdx in (0,1,2,3): # (BL,TR,TL,BR): # (BL,TR,TL,BR) / 0,1,2,3
self_v= self.v[vIdx] # shortcut
if not (self_v.x == baseVert.x and self_v.y == baseVert.y):
boxList.packedVerts.verts.append(self_v)
else:
baseVert.free &= self_v.free # make sure the
# Inherit used boxes from old verts
if self_v.blb: baseVert.blb = self_v.blb
if self_v.brb: baseVert.brb = self_v.brb #print 'inherit2'
if self_v.tlb: baseVert.tlb = self_v.tlb #print 'inherit3'
if self_v.trb: baseVert.trb = self_v.trb #print 'inherit4'
self.v[vIdx] = baseVert
# ========================== WHY DOSENT THIS WORK???
#~ if baseVert.tlb and baseVert.trb:
#~ if self == baseVert.tlb or self == baseVert.trb:
#~ if baseVert.tlb.height > baseVert.trb.height:
#~ #baseVert.trb.v[TL].free &= ~TLF & ~BLF
#~ baseVert.trb.v[TL].free &= ~TLF
#~ baseVert.trb.v[TL].free &= ~BLF
#~ elif baseVert.tlb.height < baseVert.trb.height:
#~ #baseVert.trb.v[TL].free &= ~TLF & ~BLF
#~ baseVert.tlb.v[TR].free &= ~TRF
#~ baseVert.tlb.v[TR].free &= ~BRF
#~ else: # same
#~ baseVert.tlb.v[TR].free &= ~BLF
#~ baseVert.trb.v[TL].free &= ~BRF
#~ if baseVert.blb and baseVert.brb:
#~ if self == baseVert.blb or self == baseVert.brb:
#~ if baseVert.blb.height > baseVert.brb.height:
#~ #baseVert.trb.v[TL].free &= ~TLF & ~BLF
#~ baseVert.brb.v[BL].free &= ~TLF
#~ baseVert.brb.v[BL].free &= ~BLF
#~ elif baseVert.blb.height < baseVert.brb.height:
#~ #baseVert.trb.v[TL].free &= ~TLF & ~BLF
#~ baseVert.blb.v[BR].free &= ~TRF
#~ baseVert.blb.v[BR].free &= ~BRF
#~ else: # same
#~ baseVert.blb.v[BR].free &= ~TLF
#~ baseVert.brb.v[BL].free &= ~TRF
#~ # print 'Hay', baseVert.tlb.height, baseVert.trb.height
return 1 # Working
# We have a box that intersects that quadrent.
elif overlapBox != None: # None is used for a box thats alredt in the freq list.
# There was an overlap, add this box to the verts list
#quadFlagLs = (BLF,BRF,TLF,TRF)
baseVert.intersectCache[flagIndex].append(overlapBox)
return 0
class boxList:
#Global vert pool, stores used lists
packedVerts = vertList() # will be vertList()
def __init__(self, boxes):
self.boxes = boxes
# keep a running update of the width and height so we know the area
# initialize with first box, fixes but where we whwere only packing 1 box
self.width = 0
self.height = 0
if boxes:
for b in boxes:
self.width = max(self.width, b.width)
self.height = max(self.height, b.height)
# boxArea is the total area of all boxes in the list,
# can be used with packArea() to determine waistage.
self.boxArea = 0 # incremented with addBox()
# Just like MyBoxLs.boxes.append(), but sets bounds
def addBoxPack(self, box):
'''Adds the box to the boxlist and resized the main bounds and adds area. '''
self.width = max(self.width, box.getRight())
self.height = max(self.height, box.getTop())
self.boxArea += box.area
# iterate through these
#~ quadFlagLs = (1,8,4,2)
#~ # Flags for vert idx used quads
#~ BLF = 1; TRF = 2; TLF = 4; BRF = 8
#~ quadFlagLs = (BLF,BRF,TLF,TRF)
# Look through all the free vert quads and see if there are some we can remove
# buggy but dont know why???, dont use it unless you want to debug it..
'''
for v in box.v:
# Is my bottom being used.
if v.free & BLF and v.free & BRF: # BLF and BRF
for b in self.boxes:
if b.v[TR].y == v.y:
if b.v[TR].x > v.x:
if b.v[BL].x < v.x:
v.free &= ~BLF # Removes quad
v.free &= ~BRF # Removes quad
# Is my left being used.
if v.free & BLF and v.free & TLF:
for b in self.boxes:
if b.v[TR].x == v.x:
if b.v[TR].y > v.y:
if b.v[BL].y < v.y:
v.free &= ~BLF # Removes quad
v.free &= ~TLF # Removes quad
if v.free & TRF and v.free & TLF:
# Is my top being used.
for b in self.boxes:
if b.v[BL].y == v.y:
if b.v[TR].x > v.x:
if b.v[BL].x < v.x:
v.free &= ~TLF # Removes quad
v.free &= ~TRF # Removes quad
# Is my right being used.
if v.free & TRF and v.free & BRF:
for b in self.boxes:
if b.v[BL].x == v.x:
if b.v[TR].y > v.y:
if b.v[BL].y < v.y:
v.free &= ~BRF # Removes quad
v.free &= ~TRF # Removes quad
'''
self.boxes.append(box)
# Just like MyBoxLs.boxes.append(), but sets bounds
def addBox(self, box):
self.boxes.append(box)
self.boxArea += box.area
# The area of the backing bounds.
def packedArea(self):
return self.width * self.height
# Sort boxes by area
# TODO REPLACE WITH SORT(LAMBDA(CMP...))
def sortArea(self):
self.boxes.sort(lambda A, B: cmp(B.area, A.area) ) # Reverse area sort
# BLENDER only
def draw(self):
m = NMesh.GetRaw()
for b in self.boxes:
z = min(b.width, b.height ) / max(b.width, b.height )
#z = b.farea
#z=0
f = NMesh.Face()
m.verts.append(NMesh.Vert(b.getLeft(), b.getBottom(), z))
f.v.append(m.verts[-1])
m.verts.append(NMesh.Vert(b.getRight(), b.getBottom(), z))
f.v.append(m.verts[-1])
m.verts.append(NMesh.Vert(b.getRight(), b.getTop(), z))
f.v.append(m.verts[-1])
m.verts.append(NMesh.Vert(b.getLeft(), b.getTop(), z))
f.v.append(m.verts[-1])
m.faces.append(f)
NMesh.PutRaw(m, 's')
Window.Redraw(1)
def pack(self):
self.sortArea()
if not self.boxes:
return
packedboxes = boxList([self.boxes[0]])
# Remove verts we KNOW cant be added to
unpackedboxes = boxList(self.boxes[1:])
# Start with this box, the biggest box
boxList.packedVerts.verts.extend(packedboxes.boxes[0].v)
while unpackedboxes.boxes: # != [] - while the list of unpacked boxes is not empty.
freeBoxIdx = 0
while freeBoxIdx < len(unpackedboxes.boxes):
freeBoxContext= unpackedboxes.boxes[freeBoxIdx]
# Sort the verts with this boxes dimensions as a bias, so less poky out bits are made.
boxList.packedVerts.sortCorner(freeBoxContext.width, freeBoxContext.height)
vertIdx = 0
for baseVert in boxList.packedVerts.verts:
if baseVert.free: # != 0
# This will lock the box if its possibel
if freeBoxContext.tryVert(packedboxes, baseVert):
packedboxes.addBoxPack( unpackedboxes.boxes.pop(freeBoxIdx) ) # same as freeBoxContext. but may as well pop at the same time.
freeBoxIdx = -1
break
freeBoxIdx +=1
boxList.packedVerts.verts = [] # Free the list, so it dosent use ram between runs.
self.width = packedboxes.width
self.height = packedboxes.height
#
def list(self):
''' Once packed, return a list of all boxes as a list of tuples - (X/Y/WIDTH/HEIGHT) '''
return [(b.id, b.getLeft(), b.getBottom(), b.width, b.height ) for b in self.boxes]
''' Define all globals here '''
# vert IDX's, make references easier to understand.
BL = 0; TR = 1; TL = 2; BR = 3
# iterate through these
# Flags for vert idx used quads
BLF = 1; TRF = 2; TLF = 4; BRF = 8
quadFlagLs = (BLF,BRF,TLF,TRF)
# Packs a list w/h's into box types and places then #Iter times
def boxPackIter(boxLs, iter=1, draw=0):
iterIdx = 0
bestArea = None
# Iterate over packing the boxes to get the best FIT!
while iterIdx < iter:
myBoxLs = boxList([])
for b in boxLs:
myBoxLs.addBox( box(b[1], b[2], b[0]) ) # w/h/id
myBoxLs.pack()
# myBoxLs.draw() # Draw as we go?
newArea = myBoxLs.packedArea()
#print 'pack test %s of %s, area:%.2f' % (iterIdx, iter, newArea)
# First time?
if bestArea == None:
bestArea = newArea
bestBoxLs = myBoxLs
elif newArea < bestArea:
bestArea = newArea
bestBoxLs = myBoxLs
iterIdx+=1
if draw:
bestBoxLs.draw()
#print 'best area: %.4f, %.2f%% efficient' % (bestArea, (float(bestBoxLs.boxArea) / (bestArea+0.000001))*100)
return bestBoxLs.width, bestBoxLs.height, bestBoxLs.list()
|