1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/**
* $Id: RAS_texmatrix.cpp 14444 2008-04-16 22:40:48Z hos $
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "RAS_TexMatrix.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
void RAS_CalcTexMatrix(RAS_TexVert p[3],MT_Point3& origin,MT_Vector3& udir,MT_Vector3& vdir)
{
// precondition: 3 vertices are non-colinear
MT_Vector3 vec1 = p[1].xyz()-p[0].xyz();
MT_Vector3 vec2 = p[2].xyz()-p[0].xyz();
MT_Vector3 normal = vec1.cross(vec2);
normal.normalize();
// determine which coordinate we drop, ie. max coordinate in the normal
int ZCOORD = normal.closestAxis();
int XCOORD = (ZCOORD+1)%3;
int YCOORD = (ZCOORD+2)%3;
// ax+by+cz+d=0
MT_Scalar d = -p[0].xyz().dot(normal);
MT_Matrix3x3 mat3( p[0].getUV1()[0],p[0].getUV1()[1], 1,
p[1].getUV1()[0],p[1].getUV1()[1], 1,
p[2].getUV1()[0],p[2].getUV1()[1], 1);
MT_Matrix3x3 mat3inv = mat3.inverse();
MT_Vector3 p123x(p[0].xyz()[XCOORD],p[1].xyz()[XCOORD],p[2].xyz()[XCOORD]);
MT_Vector3 resultx = mat3inv*p123x;
MT_Vector3 p123y(p[0].xyz()[YCOORD],p[1].xyz()[YCOORD],p[2].xyz()[YCOORD]);
MT_Vector3 resulty = mat3inv*p123y;
// normal[ZCOORD] is not zero, because it's chosen to be maximal (absolute), and normal has length 1,
// so at least on of the coords is <> 0
//droppedvalue udir.dot(normal) =0
MT_Scalar droppedu = -(resultx.x()*normal[XCOORD]+resulty.x()*normal[YCOORD])/normal[ZCOORD];
udir[XCOORD] = resultx.x();
udir[YCOORD] = resulty.x();
udir[ZCOORD] = droppedu;
MT_Scalar droppedv = -(resultx.y()*normal[XCOORD]+resulty.y()*normal[YCOORD])/normal[ZCOORD];
vdir[XCOORD] = resultx.y();
vdir[YCOORD] = resulty.y();
vdir[ZCOORD] = droppedv;
// droppedvalue b = -(ax+cz+d)/y;
MT_Scalar droppedvalue = -((resultx.z()*normal[XCOORD] + resulty.z()*normal[YCOORD]+d))/normal[ZCOORD];
origin[XCOORD] = resultx.z();
origin[YCOORD] = resulty.z();
origin[ZCOORD] = droppedvalue;
}
#ifdef _TEXOWNMAIN
int main()
{
MT_Point2 puv0={0,0};
MT_Point3 pxyz0 (0,0,128);
MT_Scalar puv1[2]={1,0};
MT_Point3 pxyz1(128,0,128);
MT_Scalar puv2[2]={1,1};
MT_Point3 pxyz2(128,0,0);
RAS_TexVert p0(pxyz0,puv0);
RAS_TexVert p1(pxyz1,puv1);
RAS_TexVert p2(pxyz2,puv2);
RAS_TexVert vertices[3] =
{
p0,
p1,
p2
};
MT_Vector3 udir,vdir;
MT_Point3 origin;
CalcTexMatrix(vertices,origin,udir,vdir);
MT_Point3 testpoint(128,32,64);
MT_Scalar lenu = udir.length2();
MT_Scalar lenv = vdir.length2();
MT_Scalar testu=((pxyz2-origin).dot(udir))/lenu;
MT_Scalar testv=((pxyz2-origin).dot(vdir))/lenv;
return 0;
}
#endif // _TEXOWNMAIN
|