1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
# $Id: BPyMathutils.py 20333 2009-05-22 03:45:46Z campbellbarton $
#
# --------------------------------------------------------------------------
# helper functions to be used by other scripts
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
import Blender
from Blender.Mathutils import *
# ------ Mersenne Twister - start
# Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
# Any feedback is very welcome. For any question, comments,
# see http://www.math.keio.ac.jp/matumoto/emt.html or email
# matumoto@math.keio.ac.jp
# The link above is dead, this is the new one:
# http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
# And here the license info, from Mr. Matsumoto's site:
# Until 2001/4/6, MT had been distributed under GNU Public License,
# but after 2001/4/6, we decided to let MT be used for any purpose, including
# commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered
# to be usable freely.
#
# So from the year above (1997), this code is under GPL.
# Period parameters
N = 624
M = 397
MATRIX_A = 0x9908b0dfL # constant vector a
UPPER_MASK = 0x80000000L # most significant w-r bits
LOWER_MASK = 0x7fffffffL # least significant r bits
# Tempering parameters
TEMPERING_MASK_B = 0x9d2c5680L
TEMPERING_MASK_C = 0xefc60000L
def TEMPERING_SHIFT_U(y):
return (y >> 11)
def TEMPERING_SHIFT_S(y):
return (y << 7)
def TEMPERING_SHIFT_T(y):
return (y << 15)
def TEMPERING_SHIFT_L(y):
return (y >> 18)
mt = [] # the array for the state vector
mti = N+1 # mti==N+1 means mt[N] is not initialized
# initializing the array with a NONZERO seed
def sgenrand(seed):
# setting initial seeds to mt[N] using
# the generator Line 25 of Table 1 in
# [KNUTH 1981, The Art of Computer Programming
# Vol. 2 (2nd Ed.), pp102]
global mt, mti
mt = []
mt.append(seed & 0xffffffffL)
for i in xrange(1, N + 1):
mt.append((69069 * mt[i-1]) & 0xffffffffL)
mti = i
# end sgenrand
def genrand():
global mt, mti
mag01 = [0x0L, MATRIX_A]
# mag01[x] = x * MATRIX_A for x=0,1
y = 0
if mti >= N: # generate N words at one time
if mti == N+1: # if sgenrand() has not been called,
sgenrand(4357) # a default initial seed is used
for kk in xrange((N-M) + 1):
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]
for kk in xrange(kk, N):
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK)
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]
mti = 0
y = mt[mti]
mti += 1
y ^= TEMPERING_SHIFT_U(y)
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C
y ^= TEMPERING_SHIFT_L(y)
return ( float(y) / 0xffffffffL ) # reals
#------ Mersenne Twister -- end
""" 2d convexhull
Based from Dinu C. Gherman's work,
modified for Blender/Mathutils by Campell Barton
"""
######################################################################
# Public interface
######################################################################
def convexHull(point_list_2d):
"""Calculate the convex hull of a set of vectors
The vectors can be 3 or 4d but only the Xand Y are used.
returns a list of convex hull indicies to the given point list
"""
######################################################################
# Helpers
######################################################################
def _myDet(p, q, r):
"""Calc. determinant of a special matrix with three 2D points.
The sign, "-" or "+", determines the side, right or left,
respectivly, on which the point r lies, when measured against
a directed vector from p to q.
"""
return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y)
def _isRightTurn((p, q, r)):
"Do the vectors pq:qr form a right turn, or not?"
#assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0]
if _myDet(p[0], q[0], r[0]) < 0:
return 1
else:
return 0
# Get a local list copy of the points and sort them lexically.
points = [(p, i) for i, p in enumerate(point_list_2d)]
try: points.sort(key = lambda a: (a[0].x, a[0].y))
except: points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y)))
# Build upper half of the hull.
upper = [points[0], points[1]] # cant remove these.
for i in xrange(len(points)-2):
upper.append(points[i+2])
while len(upper) > 2 and not _isRightTurn(upper[-3:]):
del upper[-2]
# Build lower half of the hull.
points.reverse()
lower = [points.pop(0), points.pop(1)]
for p in points:
lower.append(p)
while len(lower) > 2 and not _isRightTurn(lower[-3:]):
del lower[-2]
# Concatenate both halfs and return.
return [p[1] for ls in (upper, lower) for p in ls]
def plane2mat(plane, normalize= False):
'''
Takes a plane and converts to a matrix
points between 0 and 1 are up
1 and 2 are right
assumes the plane has 90d corners
'''
cent= (plane[0]+plane[1]+plane[2]+plane[3] ) /4.0
up= cent - ((plane[0]+plane[1])/2.0)
right= cent - ((plane[1]+plane[2])/2.0)
z= up.cross(right)
if normalize:
up.normalize()
right.normalize()
z.normalize()
mat= Matrix(up, right, z)
# translate
mat.resize4x4()
tmat= Blender.Mathutils.TranslationMatrix(cent)
return mat * tmat
# Used for mesh_solidify.py and mesh_wire.py
# returns a length from an angle
# Imaging a 2d space.
# there is a hoz line at Y1 going to inf on both X ends, never moves (LINEA)
# down at Y0 is a unit length line point up at (angle) from X0,Y0 (LINEB)
# This function returns the length of LINEB at the point it would intersect LINEA
# - Use this for working out how long to make the vector - differencing it from surrounding faces,
# import math
from math import pi, sin, cos, sqrt
def angleToLength(angle):
# Alredy accounted for
if angle < 0.000001: return 1.0
else: return abs(1.0 / cos(pi*angle/180));
|