1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2007, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opj_includes.h"
/* <summary> */
/* This table contains the norms of the basis function of the reversible MCT. */
/* </summary> */
static const double mct_norms[3] = { 1.732, .8292, .8292 };
/* <summary> */
/* This table contains the norms of the basis function of the irreversible MCT. */
/* </summary> */
static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 };
/* <summary> */
/* Foward reversible MCT. */
/* </summary> */
void mct_encode(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for(i = 0; i < n; ++i) {
int r = c0[i];
int g = c1[i];
int b = c2[i];
int y = (r + (g * 2) + b) >> 2;
int u = b - g;
int v = r - g;
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
/* <summary> */
/* Inverse reversible MCT. */
/* </summary> */
void mct_decode(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for (i = 0; i < n; ++i) {
int y = c0[i];
int u = c1[i];
int v = c2[i];
int g = y - ((u + v) >> 2);
int r = v + g;
int b = u + g;
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
/* <summary> */
/* Get norm of basis function of reversible MCT. */
/* </summary> */
double mct_getnorm(int compno) {
return mct_norms[compno];
}
/* <summary> */
/* Foward irreversible MCT. */
/* </summary> */
void mct_encode_real(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for(i = 0; i < n; ++i) {
int r = c0[i];
int g = c1[i];
int b = c2[i];
int y = fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934);
int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096);
int v = fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666);
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
/* <summary> */
/* Inverse irreversible MCT. */
/* </summary> */
void mct_decode_real(
float* restrict c0,
float* restrict c1,
float* restrict c2,
int n)
{
int i;
for(i = 0; i < n; ++i) {
float y = c0[i];
float u = c1[i];
float v = c2[i];
float r = y + (v * 1.402f);
float g = y - (u * 0.34413f) - (v * (0.71414f));
float b = y + (u * 1.772f);
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
/* <summary> */
/* Get norm of basis function of irreversible MCT. */
/* </summary> */
double mct_getnorm_real(int compno) {
return mct_norms_real[compno];
}
|