1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
# ***** BEGIN GPL LICENSE BLOCK *****
#
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENCE BLOCK *****
bl_info = {
"name": "Regular Solids",
"author": "DreamPainter",
"version": (2, 0),
"blender": (2, 5, 9),
"location": "View3D > Add > Mesh > Solids",
"description": "Add a regular solid",
"warning": "",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Add_Mesh/Add_Solid",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
"func=detail&aid=22405",
"category": "Add Mesh"}
import bpy
from bpy.props import FloatProperty,EnumProperty,BoolProperty
from math import sqrt
from mathutils import Vector
from functools import reduce
from bpy_extras.object_utils import object_data_add
# this function creates a chain of quads and, when necessary, a remaining tri
# for each polygon created in this script. be aware though, that this function
# assumes each polygon is convex.
# poly: list of faces, or a single face, like those
# needed for mesh.from_pydata.
# returns the tessellated faces.
def createPolys(poly):
# check for faces
if len(poly) == 0:
return []
# one or more faces
if type(poly[0]) == type(1):
poly = [poly] # if only one, make it a list of one face
faces = []
for i in poly:
L = len(i)
# let all faces of 3 or 4 verts be
if L < 5:
faces.append(i)
# split all polygons in half and bridge the two halves
else:
f = [[i[x],i[x+1],i[L-2-x],i[L-1-x]] for x in range(L//2-1)]
faces.extend(f)
if L&1 == 1:
faces.append([i[L//2-1+x] for x in [0,1,2]])
return faces
# function to make the reduce function work as a workaround to sum a list of vectors
def vSum(list):
return reduce(lambda a,b: a+b, list)
# creates the 5 platonic solids as a base for the rest
# plato: should be one of {"4","6","8","12","20"}. decides what solid the
# outcome will be.
# returns a list of vertices and faces
def source(plato):
verts = []
faces = []
# Tetrahedron
if plato == "4":
# Calculate the necessary constants
s = sqrt(2)/3.0
t = -1/3
u = sqrt(6)/3
# create the vertices and faces
v = [(0,0,1),(2*s,0,t),(-s,u,t),(-s,-u,t)]
faces = [[0,1,2],[0,2,3],[0,3,1],[1,3,2]]
# Hexahedron (cube)
elif plato == "6":
# Calculate the necessary constants
s = 1/sqrt(3)
# create the vertices and faces
v = [(-s,-s,-s),(s,-s,-s),(s,s,-s),(-s,s,-s),(-s,-s,s),(s,-s,s),(s,s,s),(-s,s,s)]
faces = [[0,3,2,1],[0,1,5,4],[0,4,7,3],[6,5,1,2],[6,2,3,7],[6,7,4,5]]
# Octahedron
elif plato == "8":
# create the vertices and faces
v = [(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1)]
faces = [[4,0,2],[4,2,1],[4,1,3],[4,3,0],[5,2,0],[5,1,2],[5,3,1],[5,0,3]]
# Dodecahedron
elif plato == "12":
# Calculate the necessary constants
s = 1/sqrt(3)
t = sqrt((3-sqrt(5))/6)
u = sqrt((3+sqrt(5))/6)
# create the vertices and faces
v = [(s,s,s),(s,s,-s),(s,-s,s),(s,-s,-s),(-s,s,s),(-s,s,-s),(-s,-s,s),(-s,-s,-s),
(t,u,0),(-t,u,0),(t,-u,0),(-t,-u,0),(u,0,t),(u,0,-t),(-u,0,t),(-u,0,-t),(0,t,u),
(0,-t,u),(0,t,-u),(0,-t,-u)]
faces = [[0,8,9,4,16],[0,12,13,1,8],[0,16,17,2,12],[8,1,18,5,9],[12,2,10,3,13],
[16,4,14,6,17],[9,5,15,14,4],[6,11,10,2,17],[3,19,18,1,13],[7,15,5,18,19],
[7,11,6,14,15],[7,19,3,10,11]]
# Icosahedron
elif plato == "20":
# Calculate the necessary constants
s = (1+sqrt(5))/2
t = sqrt(1+s*s)
s = s/t
t = 1/t
# create the vertices and faces
v = [(s,t,0),(-s,t,0),(s,-t,0),(-s,-t,0),(t,0,s),(t,0,-s),(-t,0,s),(-t,0,-s),
(0,s,t),(0,-s,t),(0,s,-t),(0,-s,-t)]
faces = [[0,8,4],[0,5,10],[2,4,9],[2,11,5],[1,6,8],[1,10,7],[3,9,6],[3,7,11],
[0,10,8],[1,8,10],[2,9,11],[3,11,9],[4,2,0],[5,0,2],[6,1,3],[7,3,1],
[8,6,4],[9,4,6],[10,5,7],[11,7,5]]
# convert the tuples to Vectors
verts = [Vector(i) for i in v]
return verts,faces
# processes the raw data from source
def createSolid(plato,vtrunc,etrunc,dual,snub):
# the duals from each platonic solid
dualSource = {"4":"4",
"6":"8",
"8":"6",
"12":"20",
"20":"12"}
# constants saving space and readability
vtrunc *= 0.5
etrunc *= 0.5
supposedSize = 0
noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0)
lSnub = (snub == "Left") and (0 < etrunc < 0.5)
rSnub = (snub == "Right") and (0 < etrunc < 0.5)
# no truncation
if vtrunc == 0:
if dual: # dual is as simple as another, but mirrored platonic solid
vInput, fInput = source(dualSource[plato])
supposedSize = vSum(vInput[i] for i in fInput[0]).length/len(fInput[0])
vInput = [-i*supposedSize for i in vInput] # mirror it
return vInput, fInput
return source(plato)
elif 0 < vtrunc <= 0.5: # simple truncation of the source
vInput, fInput = source(plato)
else:
# truncation is now equal to simple truncation of the dual of the source
vInput, fInput = source(dualSource[plato])
supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
vtrunc = 1-vtrunc # account for the source being a dual
if vtrunc == 0: # no truncation needed
if dual:
vInput, fInput = source(plato)
vInput = [i*supposedSize for i in vInput]
return vInput, fInput
vInput = [-i*supposedSize for i in vInput]
return vInput, fInput
# generate connection database
vDict = [{} for i in vInput]
# for every face, store what vertex comes after and before the current vertex
for x in range(len(fInput)):
i = fInput[x]
for j in range(len(i)):
vDict[i[j-1]][i[j]] = [i[j-2],x]
if len(vDict[i[j-1]]) == 1: vDict[i[j-1]][-1] = i[j]
# the actual connection database: exists out of:
# [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs]
vData = [[[],[],[],[]] for i in vInput]
fvOutput = [] # faces created from truncated vertices
feOutput = [] # faces created from truncated edges
vOutput = [] # newly created vertices
for x in range(len(vInput)):
i = vDict[x] # lookup the current vertex
current = i[-1]
while True: # follow the chain to get a ccw order of connected verts and faces
vData[x][2].append(i[current][0])
vData[x][3].append(i[current][1])
# create truncated vertices
vData[x][0].append((1-vtrunc)*vInput[x] + vtrunc*vInput[vData[x][2][-1]])
current = i[current][0]
if current == i[-1]: break # if we're back at the first: stop the loop
fvOutput.append([]) # new face from truncated vert
fOffset = x*(len(i)-1) # where to start off counting faceVerts
# only create one vert where one is needed (v1 todo: done)
if etrunc == 0.5:
for j in range(len(i)-1):
vOutput.append((vData[x][0][j]+vData[x][0][j-1])*etrunc) # create vert
fvOutput[x].append(fOffset+j) # add to face
fvOutput[x] = fvOutput[x][1:]+[fvOutput[x][0]] # rotate face for ease later on
# create faces from truncated edges.
for j in range(len(i)-1):
if x > vData[x][2][j]: #only create when other vertex has been added
index = vData[vData[x][2][j]][2].index(x)
feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
fvOutput[vData[x][2][j]][index],
fvOutput[vData[x][2][j]][index-1]])
# edge truncation between none and full
elif etrunc > 0:
for j in range(len(i)-1):
# create snubs from selecting verts from rectified meshes
if rSnub:
vOutput.append(etrunc*vData[x][0][j]+(1-etrunc)*vData[x][0][j-1])
fvOutput[x].append(fOffset+j)
elif lSnub:
vOutput.append((1-etrunc)*vData[x][0][j]+etrunc*vData[x][0][j-1])
fvOutput[x].append(fOffset+j)
else: #noSnub, select both verts from rectified mesh
vOutput.append(etrunc*vData[x][0][j]+(1-etrunc)*vData[x][0][j-1])
vOutput.append((1-etrunc)*vData[x][0][j]+etrunc*vData[x][0][j-1])
fvOutput[x].append(2*fOffset+2*j)
fvOutput[x].append(2*fOffset+2*j+1)
# rotate face for ease later on
if noSnub: fvOutput[x] = fvOutput[x][2:]+fvOutput[x][:2]
else: fvOutput[x] = fvOutput[x][1:]+[fvOutput[x][0]]
# create single face for each edge
if noSnub:
for j in range(len(i)-1):
if x > vData[x][2][j]:
index = vData[vData[x][2][j]][2].index(x)
feOutput.append([fvOutput[x][j*2],fvOutput[x][2*j-1],
fvOutput[vData[x][2][j]][2*index],
fvOutput[vData[x][2][j]][2*index-1]])
# create 2 tri's for each edge for the snubs
elif rSnub:
for j in range(len(i)-1):
if x > vData[x][2][j]:
index = vData[vData[x][2][j]][2].index(x)
feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
fvOutput[vData[x][2][j]][index]])
feOutput.append([fvOutput[x][j],fvOutput[vData[x][2][j]][index],
fvOutput[vData[x][2][j]][index-1]])
elif lSnub:
for j in range(len(i)-1):
if x > vData[x][2][j]:
index = vData[vData[x][2][j]][2].index(x)
feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
fvOutput[vData[x][2][j]][index-1]])
feOutput.append([fvOutput[x][j-1],fvOutput[vData[x][2][j]][index],
fvOutput[vData[x][2][j]][index-1]])
# special rules fro birectified mesh (v1 todo: done)
elif vtrunc == 0.5:
for j in range(len(i)-1):
if x < vData[x][2][j]: # use current vert, since other one has not passed yet
vOutput.append(vData[x][0][j])
fvOutput[x].append(len(vOutput)-1)
else:
# search for other edge to avoid duplicity
connectee = vData[x][2][j]
fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)])
else: # vert truncation only
vOutput.extend(vData[x][0]) # use generated verts from way above
for j in range(len(i)-1): # create face from them
fvOutput[x].append(fOffset+j)
# calculate supposed vertex length to ensure continuity
if supposedSize and not dual: # this to make the vtrunc > 1 work
supposedSize *= len(fvOutput[0])/vSum(vOutput[i] for i in fvOutput[0]).length
vOutput = [-i*supposedSize for i in vOutput]
# create new faces by replacing old vert IDs by newly generated verts
ffOutput = [[] for i in fInput]
for x in range(len(fInput)):
# only one generated vert per vertex, so choose accordingly
if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub:
ffOutput[x] = [fvOutput[i][vData[i][3].index(x)-1] for i in fInput[x]]
# two generated verts per vertex
elif etrunc > 0:
for i in fInput[x]:
ffOutput[x].append(fvOutput[i][2*vData[i][3].index(x)-1])
ffOutput[x].append(fvOutput[i][2*vData[i][3].index(x)-2])
else: # cutting off corners also makes 2 verts
for i in fInput[x]:
ffOutput[x].append(fvOutput[i][vData[i][3].index(x)])
ffOutput[x].append(fvOutput[i][vData[i][3].index(x)-1])
if not dual:
return vOutput,fvOutput + feOutput + ffOutput
else:
# do the same procedure as above, only now on the generated mesh
# generate connection database
vDict = [{} for i in vOutput]
dvOutput = [0 for i in fvOutput + feOutput + ffOutput]
dfOutput = []
for x in range(len(dvOutput)): # for every face
i = (fvOutput + feOutput + ffOutput)[x] # choose face to work with
# find vertex from face
normal = (vOutput[i[0]]-vOutput[i[1]]).cross(vOutput[i[2]]-vOutput[i[1]]).normalized()
dvOutput[x] = normal/(normal.dot(vOutput[i[0]]))
for j in range(len(i)): # create vert chain
vDict[i[j-1]][i[j]] = [i[j-2],x]
if len(vDict[i[j-1]]) == 1: vDict[i[j-1]][-1] = i[j]
# calculate supposed size for continuity
supposedSize = vSum([vInput[i] for i in fInput[0]]).length/len(fInput[0])
supposedSize /= dvOutput[-1].length
dvOutput = [i*supposedSize for i in dvOutput]
# use chains to create faces
for x in range(len(vOutput)):
i = vDict[x]
current = i[-1]
face = []
while True:
face.append(i[current][1])
current = i[current][0]
if current == i[-1]: break
dfOutput.append(face)
return dvOutput,dfOutput
class Solids(bpy.types.Operator):
"""Add one of the (regular) solids (mesh)"""
bl_idname = "mesh.primitive_solid_add"
bl_label = "(Regular) solids"
bl_description = "Add one of the Platonic, Archimedean or Catalan solids"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
source = EnumProperty(items = (("4","Tetrahedron",""),
("6","Hexahedron",""),
("8","Octahedron",""),
("12","Dodecahedron",""),
("20","Icosahedron","")),
name = "Source",
description = "Starting point of your solid")
size = FloatProperty(name = "Size",
description = "Radius of the sphere through the vertices",
min = 0.01,
soft_min = 0.01,
max = 100,
soft_max = 100,
default = 1.0)
vTrunc = FloatProperty(name = "Vertex Truncation",
description = "Ammount of vertex truncation",
min = 0.0,
soft_min = 0.0,
max = 2.0,
soft_max = 2.0,
default = 0.0,
precision = 3,
step = 0.5)
eTrunc = FloatProperty(name = "Edge Truncation",
description = "Ammount of edge truncation",
min = 0.0,
soft_min = 0.0,
max = 1.0,
soft_max = 1.0,
default = 0.0,
precision = 3,
step = 0.2)
snub = EnumProperty(items = (("None","No Snub",""),
("Left","Left Snub",""),
("Right","Right Snub","")),
name = "Snub",
description = "Create the snub version")
dual = BoolProperty(name="Dual",
description="Create the dual of the current solid",
default=False)
keepSize = BoolProperty(name="Keep Size",
description="Keep the whole solid at a constant size",
default=False)
preset = EnumProperty(items = (("0","Custom",""),
("t4","Truncated Tetrahedron",""),
("r4","Cuboctahedron",""),
("t6","Truncated Cube",""),
("t8","Truncated Octahedron",""),
("b6","Rhombicuboctahedron",""),
("c6","Truncated Cuboctahedron",""),
("s6","Snub Cube",""),
("r12","Icosidodecahedron",""),
("t12","Truncated Dodecahedron",""),
("t20","Truncated Icosahedron",""),
("b12","Rhombicosidodecahedron",""),
("c12","Truncated Icosidodecahedron",""),
("s12","Snub Dodecahedron",""),
("dt4","Triakis Tetrahedron",""),
("dr4","Rhombic Dodecahedron",""),
("dt6","Triakis Octahedron",""),
("dt8","Tetrakis Hexahedron",""),
("db6","Deltoidal Icositetrahedron",""),
("dc6","Disdyakis Dodecahedron",""),
("ds6","Pentagonal Icositetrahedron",""),
("dr12","Rhombic Triacontahedron",""),
("dt12","Triakis Icosahedron",""),
("dt20","Pentakis Dodecahedron",""),
("db12","Deltoidal Hexecontahedron",""),
("dc12","Disdyakis Triacontahedron",""),
("ds12","Pentagonal Hexecontahedron","")),
name = "Presets",
description = "Parameters for some hard names")
# actual preset values
p = {"t4":["4",2/3,0,0,"None"],
"r4":["4",1,1,0,"None"],
"t6":["6",2/3,0,0,"None"],
"t8":["8",2/3,0,0,"None"],
"b6":["6",1.0938,1,0,"None"],
"c6":["6",1.0572,0.585786,0,"None"],
"s6":["6",1.0875,0.704,0,"Left"],
"r12":["12",1,0,0,"None"],
"t12":["12",2/3,0,0,"None"],
"t20":["20",2/3,0,0,"None"],
"b12":["12",1.1338,1,0,"None"],
"c12":["20",0.921,0.553,0,"None"],
"s12":["12",1.1235,0.68,0,"Left"],
"dt4":["4",2/3,0,1,"None"],
"dr4":["4",1,1,1,"None"],
"dt6":["6",2/3,0,1,"None"],
"dt8":["8",2/3,0,1,"None"],
"db6":["6",1.0938,1,1,"None"],
"dc6":["6",1.0572,0.585786,1,"None"],
"ds6":["6",1.0875,0.704,1,"Left"],
"dr12":["12",1,0,1,"None"],
"dt12":["12",2/3,0,1,"None"],
"dt20":["20",2/3,0,1,"None"],
"db12":["12",1.1338,1,1,"None"],
"dc12":["20",0.921,0.553,1,"None"],
"ds12":["12",1.1235,0.68,1,"Left"]}
#previous preset, for User-friendly reasons
previousSetting = ""
def execute(self,context):
# turn off undo for better performance (3-5x faster), also makes sure
# that mesh ops are undoable and entire script acts as one operator
bpy.context.user_preferences.edit.use_global_undo = False
# piece of code to make presets remain until parameters are changed
if self.preset != "0":
#if preset, set preset
if self.previousSetting != self.preset:
using = self.p[self.preset]
self.source = using[0]
self.vTrunc = using[1]
self.eTrunc = using[2]
self.dual = using[3]
self.snub = using[4]
else:
using = self.p[self.preset]
result0 = self.source == using[0]
result1 = abs(self.vTrunc - using[1]) < 0.004
result2 = abs(self.eTrunc - using[2]) < 0.0015
result4 = using[4] == self.snub or ((using[4] == "Left") and
self.snub in ["Left","Right"])
if (result0 and result1 and result2 and result4):
if self.p[self.previousSetting][3] != self.dual:
if self.preset[0] == "d":
self.preset = self.preset[1:]
else:
self.preset = "d" + self.preset
else:
self.preset = "0"
self.previousSetting = self.preset
# generate mesh
verts,faces = createSolid(self.source,
self.vTrunc,
self.eTrunc,
self.dual,
self.snub)
# turn n-gons in quads and tri's
faces = createPolys(faces)
# resize to normal size, or if keepSize, make sure all verts are of length 'size'
if self.keepSize:
rad = self.size/verts[-1 if self.dual else 0].length
else: rad = self.size
verts = [i*rad for i in verts]
# generate object
# Create new mesh
mesh = bpy.data.meshes.new("Solid")
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, [], faces)
# Update mesh geometry after adding stuff.
mesh.update()
object_data_add(context, mesh, operator=None)
# object generation done
# turn undo back on
bpy.context.user_preferences.edit.use_global_undo = True
return {'FINISHED'}
class Solids_add_menu(bpy.types.Menu):
"""Define the menu with presets"""
bl_idname = "Solids_add_menu"
bl_label = "Solids"
def draw(self,context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator(Solids.bl_idname, text = "Solid")
layout.menu(PlatonicMenu.bl_idname, text = "Platonic")
layout.menu(ArchiMenu.bl_idname, text = "Archimeadean")
layout.menu(CatalanMenu.bl_idname, text = "Catalan")
class PlatonicMenu(bpy.types.Menu):
"""Define Platonic menu"""
bl_idname = "Platonic_calls"
bl_label = "Platonic"
def draw(self,context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator(Solids.bl_idname, text = "Tetrahedron").source = "4"
layout.operator(Solids.bl_idname, text = "Hexahedron").source = "6"
layout.operator(Solids.bl_idname, text = "Octahedron").source = "8"
layout.operator(Solids.bl_idname, text = "Dodecahedron").source = "12"
layout.operator(Solids.bl_idname, text = "Icosahedron").source = "20"
class ArchiMenu(bpy.types.Menu):
"""Defines Achimedean preset menu"""
bl_idname = "Achimedean_calls"
bl_label = "Archimedean"
def draw(self,context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator(Solids.bl_idname, text = "Truncated Tetrahedron").preset = "t4"
layout.operator(Solids.bl_idname, text = "Cuboctahedron").preset = "r4"
layout.operator(Solids.bl_idname, text = "Truncated Cube").preset = "t6"
layout.operator(Solids.bl_idname, text = "Truncated Octahedron").preset = "t8"
layout.operator(Solids.bl_idname, text = "Rhombicuboctahedron").preset = "b6"
layout.operator(Solids.bl_idname, text = "Truncated Cuboctahedron").preset = "c6"
layout.operator(Solids.bl_idname, text = "Snub Cube").preset = "s6"
layout.operator(Solids.bl_idname, text = "Icosidodecahedron").preset = "r12"
layout.operator(Solids.bl_idname, text = "Truncated Dodecahedron").preset = "t12"
layout.operator(Solids.bl_idname, text = "Truncated Icosahedron").preset = "t20"
layout.operator(Solids.bl_idname, text = "Rhombicosidodecahedron").preset = "b12"
layout.operator(Solids.bl_idname, text = "Truncated Icosidodecahedron").preset = "c12"
layout.operator(Solids.bl_idname, text = "Snub Dodecahedron").preset = "s12"
class CatalanMenu(bpy.types.Menu):
"""Defines Catalan preset menu"""
bl_idname = "Catalan_calls"
bl_label = "Catalan"
def draw(self, context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator(Solids.bl_idname, text = "Triakis Tetrahedron").preset = "dt4"
layout.operator(Solids.bl_idname, text = "Rhombic Dodecahedron").preset = "dr4"
layout.operator(Solids.bl_idname, text = "Triakis Octahedron").preset = "dt6"
layout.operator(Solids.bl_idname, text = "Triakis Hexahedron").preset = "dt8"
layout.operator(Solids.bl_idname, text = "Deltoidal Icositetrahedron").preset = "db6"
layout.operator(Solids.bl_idname, text = "Disdyakis Dodecahedron").preset = "dc6"
layout.operator(Solids.bl_idname, text = "Pentagonal Icositetrahedron").preset = "ds6"
layout.operator(Solids.bl_idname, text = "Rhombic Triacontahedron").preset = "dr12"
layout.operator(Solids.bl_idname, text = "Triakis Icosahedron").preset = "dt12"
layout.operator(Solids.bl_idname, text = "Pentakis Dodecahedron").preset = "dt20"
layout.operator(Solids.bl_idname, text = "Deltoidal Hexecontahedron").preset = "db12"
layout.operator(Solids.bl_idname, text = "Disdyakis Triacontahedron").preset = "dc12"
layout.operator(Solids.bl_idname, text = "Pentagonal Hexecontahedron").preset = "ds12"
def menu_func(self, context):
self.layout.menu(Solids_add_menu.bl_idname, icon="PLUGIN")
def register():
bpy.utils.register_module(__name__)
bpy.types.INFO_MT_mesh_add.append(menu_func)
def unregister():
bpy.utils.unregister_module(__name__)
bpy.types.INFO_MT_mesh_add.remove(menu_func)
if __name__ == "__main__":
register()
|