1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
|
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
#
#
# Authors : Clemens Barth (Blendphys@root-1.de), ...
#
# Homepage(Wiki) : http://development.root-1.de/Atomic_Blender.php
# Tracker : http://projects.blender.org/tracker/index.php?func=detail&aid=29226&group_id=153&atid=467
#
# Start of project : 2011-08-31 by Clemens Barth
# First publication in Blender : 2011-11-11
# Last modified : 2012-04-18
#
# Acknowledgements: Thanks to ideasman, meta_androcto, truman, kilon,
# dairin0d, PKHG, Valter, etc
#
import bpy
import io
import math
import os
import copy
from math import pi, cos, sin
from mathutils import Vector, Matrix
from copy import copy
# These are variables, which contain the name of the PDB file and
# the path of the PDB file.
# They are used almost everywhere, which is the reason why they
# should stay global. First, they are empty and get 'filled' directly
# after having chosen the PDB file (see 'class LoadPDB' further below).
ATOM_PDB_FILEPATH = ""
# Some string stuff for the console.
ATOM_PDB_STRING = "Atomic Blender\n==================="
# -----------------------------------------------------------------------------
# Atom, stick and element data
# This is a list that contains some data of all possible elements. The structure
# is as follows:
#
# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
#
# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
#
# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
# charge states for any atom are listed, if existing.
# The list is fixed and cannot be changed ... (see below)
ATOM_PDB_ELEMENTS_DEFAULT = (
( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
( 2, "Helium", "He", ( 0.85, 1.0, 1.0), 0.93, 0.93, 0.49 ),
( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
( 5, "Boron", "B", ( 1.0, 0.70, 0.70), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
( 6, "Carbon", "C", ( 0.56, 0.56, 0.56), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
(10, "Neon", "Ne", ( 0.70, 0.89, 0.96), 0.71, 0.71, 0.51 , 1 , 1.12 ),
(11, "Sodium", "Na", ( 0.67, 0.36, 0.94), 1.54, 1.54, 2.23 , 1 , 0.97 ),
(12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
(13, "Aluminium", "Al", ( 0.74, 0.65, 0.65), 1.18, 1.18, 1.82 , 3 , 0.51 ),
(14, "Silicon", "Si", ( 0.94, 0.78, 0.62), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
(15, "Phosphorus", "P", ( 1.0, 0.50, 0.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
(16, "Sulfur", "S", ( 1.0, 1.0, 0.18), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
(17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
(18, "Argon", "Ar", ( 0.50, 0.81, 0.89), 0.98, 0.98, 0.88 , 1 , 1.54 ),
(19, "Potassium", "K", ( 0.56, 0.25, 0.83), 2.03, 2.03, 2.77 , 1 , 0.81 ),
(20, "Calcium", "Ca", ( 0.23, 1.0, 0.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
(21, "Scandium", "Sc", ( 0.90, 0.90, 0.90), 1.44, 1.44, 2.09 , 3 , 0.73 ),
(22, "Titanium", "Ti", ( 0.74, 0.76, 0.78), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
(23, "Vanadium", "V", ( 0.65, 0.65, 0.67), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
(24, "Chromium", "Cr", ( 0.54, 0.6, 0.78), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
(25, "Manganese", "Mn", ( 0.61, 0.47, 0.78), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
(26, "Iron", "Fe", ( 0.87, 0.4, 0.2), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
(27, "Cobalt", "Co", ( 0.94, 0.56, 0.62), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
(28, "Nickel", "Ni", ( 0.31, 0.81, 0.31), 1.15, 1.15, 1.62 , 2 , 0.69 ),
(29, "Copper", "Cu", ( 0.78, 0.50, 0.2), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
(30, "Zinc", "Zn", ( 0.49, 0.50, 0.69), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
(31, "Gallium", "Ga", ( 0.76, 0.56, 0.56), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
(32, "Germanium", "Ge", ( 0.4, 0.56, 0.56), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
(33, "Arsenic", "As", ( 0.74, 0.50, 0.89), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
(34, "Selenium", "Se", ( 1.0, 0.63, 0.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
(35, "Bromine", "Br", ( 0.65, 0.16, 0.16), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
(36, "Krypton", "Kr", ( 0.36, 0.72, 0.81), 1.31, 1.31, 1.24 ),
(37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69), 2.16, 2.16, 2.98 , 1 , 1.47 ),
(38, "Strontium", "Sr", ( 0.0, 1.0, 0.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
(39, "Yttrium", "Y", ( 0.58, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
(40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
(41, "Niobium", "Nb", ( 0.45, 0.76, 0.78), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
(42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
(43, "Technetium", "Tc", ( 0.23, 0.61, 0.61), 1.27, 1.27, 1.95 , 7 , 0.97 ),
(44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56), 1.25, 1.25, 1.89 , 4 , 0.67 ),
(45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54), 1.25, 1.25, 1.83 , 3 , 0.68 ),
(46, "Palladium", "Pd", ( 0.0, 0.41, 0.52), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
(47, "Silver", "Ag", ( 0.75, 0.75, 0.75), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
(48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
(49, "Indium", "In", ( 0.65, 0.45, 0.45), 1.44, 1.44, 2.00 , 3 , 0.81 ),
(50, "Tin", "Sn", ( 0.4, 0.50, 0.50), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
(51, "Antimony", "Sb", ( 0.61, 0.38, 0.70), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
(52, "Tellurium", "Te", ( 0.83, 0.47, 0.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
(53, "Iodine", "I", ( 0.58, 0.0, 0.58), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
(54, "Xenon", "Xe", ( 0.25, 0.61, 0.69), 1.31, 1.31, 1.24 ),
(55, "Caesium", "Cs", ( 0.34, 0.09, 0.56), 2.35, 2.35, 3.35 , 1 , 1.67 ),
(56, "Barium", "Ba", ( 0.0, 0.78, 0.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
(57, "Lanthanum", "La", ( 0.43, 0.83, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
(58, "Cerium", "Ce", ( 1.0, 1.0, 0.78), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
(59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
(60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78), 1.64, 1.64, 2.64 , 3 , 0.99 ),
(61, "Promethium", "Pm", ( 0.63, 1.0, 0.78), 1.63, 1.63, 2.62 , 3 , 0.97 ),
(62, "Samarium", "Sm", ( 0.56, 1.0, 0.78), 1.62, 1.62, 2.59 , 3 , 0.96 ),
(63, "Europium", "Eu", ( 0.38, 1.0, 0.78), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
(64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78), 1.61, 1.61, 2.54 , 3 , 0.93 ),
(65, "Terbium", "Tb", ( 0.18, 1.0, 0.78), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
(66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78), 1.59, 1.59, 2.49 , 3 , 0.90 ),
(67, "Holmium", "Ho", ( 0.0, 1.0, 0.61), 1.58, 1.58, 2.47 , 3 , 0.89 ),
(68, "Erbium", "Er", ( 0.0, 0.90, 0.45), 1.57, 1.57, 2.45 , 3 , 0.88 ),
(69, "Thulium", "Tm", ( 0.0, 0.83, 0.32), 1.56, 1.56, 2.42 , 3 , 0.87 ),
(70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
(71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14), 1.56, 1.56, 2.25 , 3 , 0.85 ),
(72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
(73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
(74, "Tungsten", "W", ( 0.12, 0.58, 0.83), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
(75, "Rhenium", "Re", ( 0.14, 0.49, 0.67), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
(76, "Osmium", "Os", ( 0.14, 0.4, 0.58), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
(77, "Iridium", "Ir", ( 0.09, 0.32, 0.52), 1.27, 1.27, 1.87 , 4 , 0.68 ),
(78, "Platinium", "Pt", ( 0.81, 0.81, 0.87), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
(79, "Gold", "Au", ( 1.0, 0.81, 0.13), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
(80, "Mercury", "Hg", ( 0.72, 0.72, 0.81), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
(81, "Thallium", "Tl", ( 0.65, 0.32, 0.30), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
(82, "Lead", "Pb", ( 0.34, 0.34, 0.38), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
(83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
(84, "Polonium", "Po", ( 0.67, 0.36, 0.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
(85, "Astatine", "At", ( 0.45, 0.30, 0.27), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
(86, "Radon", "Rn", ( 0.25, 0.50, 0.58), 1.00, 1.00, 1.34 ),
(87, "Francium", "Fr", ( 0.25, 0.0, 0.4), 1.00, 1.00, 1.00 , 1 , 1.80 ),
(88, "Radium", "Ra", ( 0.0, 0.49, 0.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
(89, "Actinium", "Ac", ( 0.43, 0.67, 0.98), 1.00, 1.00, 1.00 , 3 , 1.18 ),
(90, "Thorium", "Th", ( 0.0, 0.72, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
(91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
(92, "Uranium", "U", ( 0.0, 0.56, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
(93, "Neptunium", "Np", ( 0.0, 0.50, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
(94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
(95, "Americium", "Am", ( 0.32, 0.36, 0.94), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
(96, "Curium", "Cm", ( 0.47, 0.36, 0.89), 1.00, 1.00, 1.00 ),
(97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89), 1.00, 1.00, 1.00 ),
(98, "Californium", "Cf", ( 0.63, 0.21, 0.83), 1.00, 1.00, 1.00 ),
(99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83), 1.00, 1.00, 1.00 ),
(100, "Fermium", "Fm", ( 0.70, 0.12, 0.72), 1.00, 1.00, 1.00 ),
(101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65), 1.00, 1.00, 1.00 ),
(102, "Nobelium", "No", ( 0.74, 0.05, 0.52), 1.00, 1.00, 1.00 ),
(103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4), 1.00, 1.00, 1.00 ),
(104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5), 1.00, 1.00, 1.00),
(105, "Default", "Default", ( 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
(106, "Stick", "Stick", ( 0.5, 0.5, 0.5), 1.00, 1.00, 1.00),
)
# This list here contains all data of the elements and will be used during
# runtime. It is a list of classes.
# During executing Atomic Blender, the list will be initialized with the fixed
# data from above via the class structure below (CLASS_atom_pdb_Elements). We
# have then one fixed list (above), which will never be changed, and a list of
# classes with same data. The latter can be modified via loading a separate
# custom data file.
ATOM_PDB_ELEMENTS = []
# This is the class, which stores the properties for one element.
class CLASS_atom_pdb_Elements(object):
__slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
def __init__(self, number, name, short_name, color, radii, radii_ionic):
self.number = number
self.name = name
self.short_name = short_name
self.color = color
self.radii = radii
self.radii_ionic = radii_ionic
# This is the class, which stores the properties of one atom.
class CLASS_atom_pdb_atom(object):
__slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
def __init__(self, element, name, location, radius, color, material):
self.element = element
self.name = name
self.location = location
self.radius = radius
self.color = color
self.material = material
# This is the class, which stores the two atoms of one stick.
class CLASS_atom_pdb_stick(object):
__slots__ = ('atom1', 'atom2', 'number', 'dist')
def __init__(self, atom1, atom2, number, dist):
self.atom1 = atom1
self.atom2 = atom2
self.number = number
self.dist = dist
# -----------------------------------------------------------------------------
# Some small routines
# Routine which produces a cylinder. All is somewhat easy to undertsand.
def DEF_atom_pdb_build_stick(radius, length, sectors):
dphi = 2.0 * pi/(float(sectors)-1)
# Vertices
vertices_top = [Vector((0,0,length / 2.0))]
vertices_bottom = [Vector((0,0,-length / 2.0))]
vertices = []
for i in range(sectors-1):
x = radius * cos( dphi * i )
y = radius * sin( dphi * i )
z = length / 2.0
vertex = Vector((x,y,z))
vertices_top.append(vertex)
z = -length / 2.0
vertex = Vector((x,y,z))
vertices_bottom.append(vertex)
vertices = vertices_top + vertices_bottom
# Side facets (Cylinder)
faces1 = []
for i in range(sectors-1):
if i == sectors-2:
faces1.append( [i+1, 1, 1+sectors, i+1+sectors] )
else:
faces1.append( [i+1, i+2, i+2+sectors, i+1+sectors] )
# Top facets
faces2 = []
for i in range(sectors-1):
if i == sectors-2:
face_top = [0,sectors-1,1]
face_bottom = [sectors,2*sectors-1,sectors+1]
else:
face_top = [0]
face_bottom = [sectors]
for j in range(2):
face_top.append(i+j+1)
face_bottom.append(i+j+1+sectors)
faces2.append(face_top)
faces2.append(face_bottom)
# Build the mesh, Cylinder
cylinder = bpy.data.meshes.new("Sticks_Cylinder")
cylinder.from_pydata(vertices, [], faces1)
cylinder.update()
new_cylinder = bpy.data.objects.new("Sticks_Cylinder", cylinder)
bpy.context.scene.objects.link(new_cylinder)
# Build the mesh, Cups
cups = bpy.data.meshes.new("Sticks_Cups")
cups.from_pydata(vertices, [], faces2)
cups.update()
new_cups = bpy.data.objects.new("Sticks_Cups", cups)
bpy.context.scene.objects.link(new_cups)
return (new_cylinder, new_cups)
# This function measures the distance between two active objects (atoms).
def DEF_atom_pdb_distance():
if len(bpy.context.selected_bases) > 1:
object_1 = bpy.context.selected_objects[0]
object_2 = bpy.context.selected_objects[1]
else:
return "N.A."
dv = object_2.location - object_1.location
return str(dv.length)
# Routine to modify the radii via the type: predefined, atomic or van der Waals
# Explanations here are also valid for the next 3 DEFs.
def DEF_atom_pdb_radius_type(rtype,how):
if how == "ALL_IN_LAYER":
# Note all layers that are active.
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
# Put all objects, which are in the layers, into a list.
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
# Consider all objects, which are in the list 'change_objects'.
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
obj.children[0].scale = (element.radii[int(rtype)],) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
obj.scale = (element.radii[int(rtype)],) * 3
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
obj.children[0].scale = (element.radii[int(rtype)],) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
obj.scale = (element.radii[int(rtype)],) * 3
# Routine to modify the radii in picometer of a specific type of atom
def DEF_atom_pdb_radius_pm(atomname, radius_pm, how):
if how == "ALL_IN_LAYER":
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if atomname in obj.name:
if "Stick" not in obj.name:
obj.children[0].scale = (radius_pm/100,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if atomname in obj.name:
if "Stick" not in obj.name:
obj.scale = (radius_pm/100,) * 3
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if atomname in obj.name:
if "Stick" not in obj.name:
obj.children[0].scale = (radius_pm/100,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if atomname in obj.name:
if "Stick" not in obj.name:
obj.scale = (radius_pm/100,) * 3
# Routine to scale the radii of all atoms
def DEF_atom_pdb_radius_all(scale, how):
if how == "ALL_IN_LAYER":
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale *= scale
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
obj.scale *= scale
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale *= scale
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
obj.scale *= scale
# This routine downscales all atom radii onto the value of the stick radius
# for showing the sticks.
def DEF_atom_pdb_radius_sticks(radius, how):
# Are there any sticks?
Found = False
if how == "ALL_IN_LAYER":
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" in obj.name:
Found = True
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" in obj.name:
Found = True
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" in obj.name:
Found = True
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" in obj.name:
Found = True
if Found == False:
return False
if how == "ALL_IN_LAYER":
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale = (radius,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
obj.scale = (radius,) * 3
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale = (radius,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
obj.scale = (radius,) * 3
return True
# -----------------------------------------------------------------------------
# The custom data file
def DEF_atom_pdb_custom_datafile(path_datafile):
if path_datafile == "":
return False
path_datafile = bpy.path.abspath(path_datafile)
if os.path.isfile(path_datafile) == False:
return False
# The whole list gets deleted! We build it new.
ATOM_PDB_ELEMENTS[:] = []
# Read the data file, which contains all data
# (atom name, radii, colors, etc.)
data_file_p = io.open(path_datafile, "r")
for line in data_file_p:
if "Atom" in line:
line = data_file_p.readline()
# Number
line = data_file_p.readline()
number = line[19:-1]
# Name
line = data_file_p.readline()
name = line[19:-1]
# Short name
line = data_file_p.readline()
short_name = line[19:-1]
# Color
line = data_file_p.readline()
color_value = line[19:-1].split(',')
color = [float(color_value[0]),
float(color_value[1]),
float(color_value[2])]
# Used radius
line = data_file_p.readline()
radius_used = float(line[19:-1])
# Atomic radius
line = data_file_p.readline()
radius_atomic = float(line[19:-1])
# Van der Waals radius
line = data_file_p.readline()
radius_vdW = float(line[19:-1])
radii = [radius_used,radius_atomic,radius_vdW]
radii_ionic = []
element = CLASS_atom_pdb_Elements(number,name,short_name,color,
radii, radii_ionic)
ATOM_PDB_ELEMENTS.append(element)
data_file_p.close()
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
child = obj.children[0]
if child.type == "SURFACE" or child.type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
child.scale = (element.radii[0],) * 3
child.active_material.diffuse_color = element.color
else:
if obj.type == "SURFACE" or obj.type == "MESH":
for element in ATOM_PDB_ELEMENTS:
if element.name in obj.name:
obj.scale = (element.radii[0],) * 3
obj.active_material.diffuse_color = element.color
return True
# -----------------------------------------------------------------------------
# The main routine
def DEF_atom_pdb_main(use_mesh,Ball_azimuth,Ball_zenith,
Ball_radius_factor,radiustype,Ball_distance_factor,
use_sticks,use_sticks_color,use_sticks_smooth,
use_sticks_bonds, Stick_unit, Stick_dist,
Stick_sectors,Stick_diameter,put_to_center,
use_camera,use_lamp,path_datafile):
# The list of all atoms as read from the PDB file.
all_atoms = []
# The list of all sticks.
all_sticks = []
# List of materials
atom_material_list = []
# A list of ALL objects which are loaded (needed for selecting the loaded
# structure.
atom_object_list = []
# ------------------------------------------------------------------------
# INITIALIZE THE ELEMENT LIST
ATOM_PDB_ELEMENTS[:] = []
for item in ATOM_PDB_ELEMENTS_DEFAULT:
# All three radii into a list
radii = [item[4],item[5],item[6]]
# The handling of the ionic radii will be done later. So far, it is an
# empty list.
radii_ionic = []
li = CLASS_atom_pdb_Elements(item[0],item[1],item[2],item[3],
radii,radii_ionic)
ATOM_PDB_ELEMENTS.append(li)
# ------------------------------------------------------------------------
# READING DATA OF ATOMS
if DEF_atom_pdb_custom_datafile(path_datafile):
print("Custom data file is loaded.")
# Open the file ...
ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
#Go to the line, in which "ATOM" or "HETATM" appears.
for line in ATOM_PDB_FILEPATH_p:
split_list = line.split(' ')
if "ATOM" in split_list[0]:
break
if "HETATM" in split_list[0]:
break
j = 0
# This is in fact an endless 'while loop', ...
while j > -1:
# ... the loop is broken here (EOF) ...
if line == "":
break
# If there is a "TER" we need to put empty entries into the lists
# in order to not destroy the order of atom numbers and same numbers
# used for sticks. "TER? What is that?" TER indicates the end of a
# list of ATOM/HETATM records for a chain.
if "TER" in line:
short_name = "TER"
name = "TER"
radius = 0.0
color = [0,0,0]
location = Vector((0,0,0))
# Append the TER into the list. Material remains empty so far.
all_atoms.append(CLASS_atom_pdb_atom(short_name,
name,
location,
radius,
color,[]))
# If 'ATOM or 'HETATM' appears in the line then do ...
elif "ATOM" in line or "HETATM" in line:
# What follows is due to deviations which appear from PDB to
# PDB file. It is very special!
#
# PLEASE, DO NOT CHANGE! ............................... from here
if line[12:13] == " " or line[12:13].isdigit() == True:
short_name = line[13:14]
if line[14:15].islower() == True:
short_name = short_name + line[14:15]
elif line[12:13].isupper() == True:
short_name = line[12:13]
if line[13:14].isalpha() == True:
short_name = short_name + line[13:14]
else:
print("Atomic Blender: Strange error in PDB file.\n"
"Look for element names at positions 13-16 and 78-79.\n")
return -1
if len(line) >= 78:
if line[76:77] == " ":
short_name2 = line[76:77]
else:
short_name2 = line[76:78]
if short_name2.isalpha() == True:
FOUND = False
for element in ATOM_PDB_ELEMENTS:
if str.upper(short_name2) == str.upper(element.short_name):
FOUND = True
break
if FOUND == False:
short_name = short_name2
# ....................................................... to here.
# Go through all elements and find the element of the current atom.
FLAG_FOUND = False
for element in ATOM_PDB_ELEMENTS:
if str.upper(short_name) == str.upper(element.short_name):
# Give the atom its proper names, color and radius:
short_name = str.upper(element.short_name)
name = element.name
# int(radiustype) => type of radius:
# pre-defined (0), atomic (1) or van der Waals (2)
radius = float(element.radii[int(radiustype)])
color = element.color
FLAG_FOUND = True
break
# Is it a vacancy or an 'unknown atom' ?
if FLAG_FOUND == False:
# Give this atom also a name. If it is an 'X' then it is a
# vacancy. Otherwise ...
if "X" in short_name:
short_name = "VAC"
name = "Vacancy"
radius = float(ATOM_PDB_ELEMENTS[-3].radii[int(radiustype)])
color = ATOM_PDB_ELEMENTS[-3].color
# ... take what is written in the PDB file. These are somewhat
# unknown atoms. This should never happen, the element list is
# almost complete. However, we do this due to security reasons.
else:
short_name = str.upper(short_name)
name = str.upper(short_name)
radius = float(ATOM_PDB_ELEMENTS[-2].radii[int(radiustype)])
color = ATOM_PDB_ELEMENTS[-2].color
# x,y and z are at fixed positions in the PDB file.
x = float(line[30:38].rsplit()[0])
y = float(line[38:46].rsplit()[0])
z = float(line[46:55].rsplit()[0])
location = Vector((x,y,z))
j += 1
# Append the atom to the list. Material remains empty so far.
all_atoms.append(CLASS_atom_pdb_atom(short_name,
name,
location,
radius,
color,[]))
line = ATOM_PDB_FILEPATH_p.readline()
line = line[:-1]
ATOM_PDB_FILEPATH_p.close()
# From above it can be clearly seen that j is now the number of all atoms.
Number_of_total_atoms = j
# ------------------------------------------------------------------------
# MATERIAL PROPERTIES FOR ATOMS
# The list that contains info about all types of atoms is created
# here. It is used for building the material properties for
# instance (see below).
atom_all_types_list = []
for atom in all_atoms:
FLAG_FOUND = False
for atom_type in atom_all_types_list:
# If the atom name is already in the list, FLAG on 'True'.
if atom_type[0] == atom.name:
FLAG_FOUND = True
break
# No name in the current list has been found? => New entry.
if FLAG_FOUND == False:
# Stored are: Atom label (e.g. 'Na'), the corresponding atom
# name (e.g. 'Sodium') and its color.
atom_all_types_list.append([atom.name, atom.element, atom.color])
# The list of materials is built.
# Note that all atoms of one type (e.g. all hydrogens) get only ONE
# material! This is good because then, by activating one atom in the
# Blender scene and changing the color of this atom, one changes the color
# of ALL atoms of the same type at the same time.
# Create first a new list of materials for each type of atom
# (e.g. hydrogen)
for atom_type in atom_all_types_list:
material = bpy.data.materials.new(atom_type[1])
material.name = atom_type[0]
material.diffuse_color = atom_type[2]
atom_material_list.append(material)
# Now, we go through all atoms and give them a material. For all atoms ...
for atom in all_atoms:
# ... and all materials ...
for material in atom_material_list:
# ... select the correct material for the current atom via
# comparison of names ...
if atom.name in material.name:
# ... and give the atom its material properties.
# However, before we check, if it is a vacancy, because then it
# gets some additional preparation. The vacancy is represented
# by a transparent cube.
if atom.name == "Vacancy":
material.transparency_method = 'Z_TRANSPARENCY'
material.alpha = 1.3
material.raytrace_transparency.fresnel = 1.6
material.raytrace_transparency.fresnel_factor = 1.6
material.use_transparency = True
# The atom gets its properties.
atom.material = material
# ------------------------------------------------------------------------
# READING DATA OF STICKS
# Open the PDB file again such that the file pointer is in the first
# line ... . Stupid, I know ... ;-)
ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
split_list = line.split(' ')
# Go to the first entry
if "CONECT" not in split_list[0]:
for line in ATOM_PDB_FILEPATH_p:
split_list = line.split(' ')
if "CONECT" in split_list[0]:
break
Number_of_sticks = 0
sticks_double = 0
j = 0
# This is in fact an endless while loop, ...
while j > -1:
# ... which is broken here (EOF) ...
if line == "":
break
# ... or here, when no 'CONECT' appears anymore.
if "CONECT" not in line:
break
# The strings of the atom numbers do have a clear position in the file
# (From 7 to 12, from 13 to 18 and so on.) and one needs to consider
# this. One could also use the split function but then one gets into
# trouble if there are lots of atoms: For instance, it may happen that
# one has
# CONECT 11111 22244444
#
# In Fact it means that atom No. 11111 has a connection with atom
# No. 222 but also with atom No. 44444. The split function would give
# me only two numbers (11111 and 22244444), which is wrong.
# Cut spaces from the right and 'CONECT' at the beginning
line = line.rstrip()
line = line[6:]
# Amount of loops
length = len(line)
loops = int(length/5)
# List of atoms
atom_list = []
for i in range(loops):
number = line[5*i:5*(i+1)].rsplit()
if number != []:
if number[0].isdigit() == True:
atom_number = int(number[0])
atom_list.append(atom_number)
# The first atom is connected with all the others in the list.
atom1 = atom_list[0]
# For all the other atoms in the list do:
for atom2 in atom_list[1:]:
if use_sticks_bonds == True:
number = atom_list[1:].count(atom2)
if number == 2 or number == 3:
basis_list = list(set(atom_list[1:]))
if len(basis_list) > 1:
basis1 = (all_atoms[atom1-1].location
- all_atoms[basis_list[0]-1].location)
basis2 = (all_atoms[atom1-1].location
- all_atoms[basis_list[1]-1].location)
plane_n = basis1.cross(basis2)
dist_n = (all_atoms[atom1-1].location
- all_atoms[atom2-1].location)
dist_n = dist_n.cross(plane_n)
dist_n = dist_n / dist_n.length
else:
dist_n = (all_atoms[atom1-1].location
- all_atoms[atom2-1].location)
dist_n = Vector((dist_n[1],-dist_n[0],0))
dist_n = dist_n / dist_n.length
elif number > 3:
number = 1
dist_n = None
else:
dist_n = None
else:
number = 1
dist_n = None
# Note that in a PDB file, sticks of one atom pair can appear a
# couple of times. (Only god knows why ...)
# So, does a stick between the considered atoms already exist?
FLAG_BAR = False
for k in range(Number_of_sticks):
if ((all_sticks[k].atom1 == atom1 and all_sticks[k].atom2 == atom2) or
(all_sticks[k].atom2 == atom1 and all_sticks[k].atom1 == atom2)):
sticks_double += 1
# If yes, then FLAG on 'True'.
FLAG_BAR = True
break
# If the stick is not yet registered (FLAG_BAR == False), then
# register it!
if FLAG_BAR == False:
all_sticks.append(CLASS_atom_pdb_stick(atom1,atom2,number,dist_n))
Number_of_sticks += 1
j += 1
line = ATOM_PDB_FILEPATH_p.readline()
line = line.rstrip()
ATOM_PDB_FILEPATH_p.close()
# So far, all atoms and sticks have been registered.
# ------------------------------------------------------------------------
# TRANSLATION OF THE STRUCTURE TO THE ORIGIN
# It may happen that the structure in a PDB file already has an offset
# If chosen, the structure is first put into the center of the scene
# (the offset is substracted).
if put_to_center == True:
sum_vec = Vector((0.0,0.0,0.0))
# Sum of all atom coordinates
sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
# Then the average is taken
sum_vec = sum_vec / Number_of_total_atoms
# After, for each atom the center of gravity is substracted
for atom in all_atoms:
atom.location -= sum_vec
# ------------------------------------------------------------------------
# SCALING
# Take all atoms and adjust their radii and scale the distances.
for atom in all_atoms:
atom.location *= Ball_distance_factor
# ------------------------------------------------------------------------
# DETERMINATION OF SOME GEOMETRIC PROPERTIES
# In the following, some geometric properties of the whole object are
# determined: center, size, etc.
sum_vec = Vector((0.0,0.0,0.0))
# First the center is determined. All coordinates are summed up ...
sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
# ... and the average is taken. This gives the center of the object.
object_center_vec = sum_vec / Number_of_total_atoms
# Now, we determine the size.The farest atom from the object center is
# taken as a measure. The size is used to place well the camera and light
# into the scene.
object_size_vec = [atom.location - object_center_vec for atom in all_atoms]
object_size = 0.0
object_size = max(object_size_vec).length
# ------------------------------------------------------------------------
# CAMERA AND LAMP
camera_factor = 15.0
# If chosen a camera is put into the scene.
if use_camera == True:
# Assume that the object is put into the global origin. Then, the
# camera is moved in x and z direction, not in y. The object has its
# size at distance math.sqrt(object_size) from the origin. So, move the
# camera by this distance times a factor of camera_factor in x and z.
# Then add x, y and z of the origin of the object.
object_camera_vec = Vector((math.sqrt(object_size) * camera_factor,
0.0,
math.sqrt(object_size) * camera_factor))
camera_xyz_vec = object_center_vec + object_camera_vec
# Create the camera
current_layers=bpy.context.scene.layers
bpy.ops.object.camera_add(view_align=False, enter_editmode=False,
location=camera_xyz_vec,
rotation=(0.0, 0.0, 0.0), layers=current_layers)
# Some properties of the camera are changed.
camera = bpy.context.scene.objects.active
camera.name = "A_camera"
camera.data.name = "A_camera"
camera.data.lens = 45
camera.data.clip_end = 500.0
# Here the camera is rotated such it looks towards the center of
# the object. The [0.0, 0.0, 1.0] vector along the z axis
z_axis_vec = Vector((0.0, 0.0, 1.0))
# The angle between the last two vectors
angle = object_camera_vec.angle(z_axis_vec, 0)
# The cross-product of z_axis_vec and object_camera_vec
axis_vec = z_axis_vec.cross(object_camera_vec)
# Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
# 4 is the size of the matrix.
euler = Matrix.Rotation(angle, 4, axis_vec).to_euler()
camera.rotation_euler = euler
# Rotate the camera around its axis by 90° such that we have a nice
# camera position and view onto the object.
bpy.ops.transform.rotate(value=(90.0*2*math.pi/360.0,),
axis=object_camera_vec,
constraint_axis=(False, False, False),
constraint_orientation='GLOBAL',
mirror=False, proportional='DISABLED',
proportional_edit_falloff='SMOOTH',
proportional_size=1, snap=False,
snap_target='CLOSEST', snap_point=(0, 0, 0),
snap_align=False, snap_normal=(0, 0, 0),
release_confirm=False)
# Here a lamp is put into the scene, if chosen.
if use_lamp == True:
# This is the distance from the object measured in terms of %
# of the camera distance. It is set onto 50% (1/2) distance.
lamp_dl = math.sqrt(object_size) * 15 * 0.5
# This is a factor to which extend the lamp shall go to the right
# (from the camera point of view).
lamp_dy_right = lamp_dl * (3.0/4.0)
# Create x, y and z for the lamp.
object_lamp_vec = Vector((lamp_dl,lamp_dy_right,lamp_dl))
lamp_xyz_vec = object_center_vec + object_lamp_vec
# Create the lamp
current_layers=bpy.context.scene.layers
bpy.ops.object.lamp_add (type = 'POINT', view_align=False,
location=lamp_xyz_vec,
rotation=(0.0, 0.0, 0.0),
layers=current_layers)
# Some properties of the lamp are changed.
lamp = bpy.context.scene.objects.active
lamp.data.name = "A_lamp"
lamp.name = "A_lamp"
lamp.data.distance = 500.0
lamp.data.energy = 3.0
lamp.data.shadow_method = 'RAY_SHADOW'
bpy.context.scene.world.light_settings.use_ambient_occlusion = True
bpy.context.scene.world.light_settings.ao_factor = 0.2
# ------------------------------------------------------------------------
# SOME OUTPUT ON THE CONSOLE
print()
print()
print()
print(ATOM_PDB_STRING)
print()
print("Total number of atoms : " + str(Number_of_total_atoms))
print("Total number of sticks : " + str(Number_of_sticks))
print("Center of object (Angstrom) : ", object_center_vec)
print("Size of object (Angstrom) : ", object_size)
print()
# ------------------------------------------------------------------------
# SORTING THE ATOMS
# Lists of atoms of one type are created. Example:
# draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ]
# data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]
draw_all_atoms = []
# Go through the list which contains all types of atoms. It is the list,
# which has been created on the top during reading the PDB file.
# Example: atom_all_types_list = ["hydrogen", "carbon", ...]
for atom_type in atom_all_types_list:
# Don't draw 'TER atoms'.
if atom_type[0] == "TER":
continue
# This is the draw list, which contains all atoms of one type (e.g.
# all hydrogens) ...
draw_all_atoms_type = []
# Go through all atoms ...
for atom in all_atoms:
# ... select the atoms of the considered type via comparison ...
if atom.name == atom_type[0]:
# ... and append them to the list 'draw_all_atoms_type'.
draw_all_atoms_type.append([atom.name,
atom.material,
atom.location,
atom.radius])
# Now append the atom list to the list of all types of atoms
draw_all_atoms.append(draw_all_atoms_type)
# ------------------------------------------------------------------------
# DRAWING THE ATOMS
# This is the number of all atoms which are put into the scene.
bpy.ops.object.select_all(action='DESELECT')
# For each list of atoms of ONE type (e.g. Hydrogen)
for draw_all_atoms_type in draw_all_atoms:
# Create first the vertices composed of the coordinates of all
# atoms of one type
atom_vertices = []
for atom in draw_all_atoms_type:
# In fact, the object is created in the World's origin.
# This is why 'object_center_vec' is substracted. At the end
# the whole object is translated back to 'object_center_vec'.
atom_vertices.append( atom[2] - object_center_vec )
# Build the mesh
atom_mesh = bpy.data.meshes.new("Mesh_"+atom[0])
atom_mesh.from_pydata(atom_vertices, [], [])
atom_mesh.update()
new_atom_mesh = bpy.data.objects.new(atom[0], atom_mesh)
bpy.context.scene.objects.link(new_atom_mesh)
# Now, build a representative sphere (atom)
current_layers=bpy.context.scene.layers
if atom[0] == "Vacancy":
bpy.ops.mesh.primitive_cube_add(
view_align=False, enter_editmode=False,
location=(0.0, 0.0, 0.0),
rotation=(0.0, 0.0, 0.0),
layers=current_layers)
else:
# NURBS balls
if use_mesh == False:
bpy.ops.surface.primitive_nurbs_surface_sphere_add(
view_align=False, enter_editmode=False,
location=(0,0,0), rotation=(0.0, 0.0, 0.0),
layers=current_layers)
# UV balls
else:
bpy.ops.mesh.primitive_uv_sphere_add(
segments=Ball_azimuth, ring_count=Ball_zenith,
size=1, view_align=False, enter_editmode=False,
location=(0,0,0), rotation=(0, 0, 0),
layers=current_layers)
ball = bpy.context.scene.objects.active
ball.scale = (atom[3]*Ball_radius_factor,) * 3
if atom[0] == "Vacancy":
ball.name = "Cube_"+atom[0]
else:
ball.name = "Ball_"+atom[0]
ball.active_material = atom[1]
ball.parent = new_atom_mesh
new_atom_mesh.dupli_type = 'VERTS'
# The object is back translated to 'object_center_vec'.
new_atom_mesh.location = object_center_vec
atom_object_list.append(new_atom_mesh)
print()
# ------------------------------------------------------------------------
# DRAWING THE STICKS
if use_sticks == True and all_sticks != []:
dl = Stick_unit
if use_sticks_color == False:
bpy.ops.object.material_slot_add()
stick_material = bpy.data.materials.new(ATOM_PDB_ELEMENTS[-1].name)
stick_material.diffuse_color = ATOM_PDB_ELEMENTS[-1].color
# Sort the sticks and put them into a new list such that ...
sticks_all_lists = []
if use_sticks_color == True:
for atom_type in atom_all_types_list:
if atom_type[0] == "TER":
continue
sticks_list = []
for stick in all_sticks:
for repeat in range(stick.number):
atom1 = copy(all_atoms[stick.atom1-1].location)
atom2 = copy(all_atoms[stick.atom2-1].location)
dist = Stick_diameter * Stick_dist
if stick.number == 2:
if repeat == 0:
atom1 += (stick.dist * dist)
atom2 += (stick.dist * dist)
if repeat == 1:
atom1 -= (stick.dist * dist)
atom2 -= (stick.dist * dist)
if stick.number == 3:
if repeat == 0:
atom1 += (stick.dist * dist)
atom2 += (stick.dist * dist)
if repeat == 2:
atom1 -= (stick.dist * dist)
atom2 -= (stick.dist * dist)
dv = atom1 - atom2
n = dv / dv.length
if atom_type[0] == all_atoms[stick.atom1-1].name:
location = atom1
name = "_" + all_atoms[stick.atom1-1].name
material = all_atoms[stick.atom1-1].material
sticks_list.append([name, location, dv, material])
if atom_type[0] == all_atoms[stick.atom2-1].name:
location = atom1 - n * dl * int(math.ceil(dv.length / (2.0 * dl)))
name = "_" + all_atoms[stick.atom2-1].name
material = all_atoms[stick.atom2-1].material
sticks_list.append([name, location, dv, material])
if sticks_list != []:
sticks_all_lists.append(sticks_list)
else:
sticks_list = []
for stick in all_sticks:
if stick.number > 3:
stick.number = 1
for repeat in range(stick.number):
atom1 = copy(all_atoms[stick.atom1-1].location)
atom2 = copy(all_atoms[stick.atom2-1].location)
dist = Stick_diameter * Stick_dist
if stick.number == 2:
if repeat == 0:
atom1 += (stick.dist * dist)
atom2 += (stick.dist * dist)
if repeat == 1:
atom1 -= (stick.dist * dist)
atom2 -= (stick.dist * dist)
if stick.number == 3:
if repeat == 0:
atom1 += (stick.dist * dist)
atom2 += (stick.dist * dist)
if repeat == 2:
atom1 -= (stick.dist * dist)
atom2 -= (stick.dist * dist)
dv = atom1 - atom2
n = dv / dv.length
location = atom1
material = stick_material
sticks_list.append(["", location, dv, material])
sticks_all_lists.append(sticks_list)
# ... the sticks in the list can be drawn:
for stick_list in sticks_all_lists:
vertices = []
faces = []
i = 0
# What follows is school mathematics! :-)
for stick in stick_list:
dv = stick[2]
v1 = stick[1]
n = dv / dv.length
gamma = -n * v1
b = v1 + gamma * n
n_b = b / b.length
if use_sticks_color == True:
loops = int(math.ceil(dv.length / (2.0 * dl)))
else:
loops = int(math.ceil(dv.length / dl))
for j in range(loops):
g = v1 - n * dl / 2.0 - n * dl * j
p1 = g + n_b * Stick_diameter
p2 = g - n_b * Stick_diameter
p3 = g - n_b.cross(n) * Stick_diameter
p4 = g + n_b.cross(n) * Stick_diameter
vertices.append(p1)
vertices.append(p2)
vertices.append(p3)
vertices.append(p4)
faces.append((i*4+0,i*4+2,i*4+1,i*4+3))
i += 1
mesh = bpy.data.meshes.new("Sticks"+stick[0])
mesh.from_pydata(vertices, [], faces)
mesh.update()
new_mesh = bpy.data.objects.new("Sticks"+stick[0], mesh)
bpy.context.scene.objects.link(new_mesh)
current_layers = bpy.context.scene.layers
object_stick = DEF_atom_pdb_build_stick(Stick_diameter, dl, Stick_sectors)
stick_cylinder = object_stick[0]
stick_cylinder.active_material = stick[3]
stick_cups = object_stick[1]
stick_cups.active_material = stick[3]
if use_sticks_smooth == True:
bpy.ops.object.select_all(action='DESELECT')
stick_cylinder.select = True
stick_cups.select = True
bpy.ops.object.shade_smooth()
stick_cylinder.parent = new_mesh
stick_cups.parent = new_mesh
new_mesh.dupli_type = 'FACES'
atom_object_list.append(new_mesh)
# ------------------------------------------------------------------------
# SELECT ALL LOADED OBJECTS
bpy.ops.object.select_all(action='DESELECT')
obj = None
for obj in atom_object_list:
obj.select = True
# activate the last selected object (perhaps another should be active?)
if obj:
bpy.context.scene.objects.active = obj
print("\n\nAll atoms (%d) and sticks (%d) have been drawn - finished.\n\n"
% (Number_of_total_atoms,Number_of_sticks))
return Number_of_total_atoms
|