1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
__all__ = (
"mesh_linked_tessfaces",
"edge_face_count_dict",
"edge_face_count",
"edge_loops_from_tessfaces",
"edge_loops_from_edges",
"ngon_tessellate",
"face_random_points",
)
def mesh_linked_tessfaces(mesh):
"""
Splits the mesh into connected faces, use this for seperating cubes from
other mesh elements within 1 mesh datablock.
:arg mesh: the mesh used to group with.
:type mesh: :class:`bpy.types.Mesh`
:return: lists of lists containing faces.
:rtype: list
"""
# Build vert face connectivity
vert_faces = [[] for i in range(len(mesh.vertices))]
for f in mesh.tessfaces:
for v in f.vertices:
vert_faces[v].append(f)
# sort faces into connectivity groups
face_groups = [[f] for f in mesh.tessfaces]
# map old, new face location
face_mapping = list(range(len(mesh.tessfaces)))
# Now clump faces iteratively
ok = True
while ok:
ok = False
for i, f in enumerate(mesh.tessfaces):
mapped_index = face_mapping[f.index]
mapped_group = face_groups[mapped_index]
for v in f.vertices:
for nxt_f in vert_faces[v]:
if nxt_f != f:
nxt_mapped_index = face_mapping[nxt_f.index]
# We are not a part of the same group
if mapped_index != nxt_mapped_index:
ok = True
# Assign mapping to this group so they
# all map to this group
for grp_f in face_groups[nxt_mapped_index]:
face_mapping[grp_f.index] = mapped_index
# Move faces into this group
mapped_group.extend(face_groups[nxt_mapped_index])
# remove reference to the list
face_groups[nxt_mapped_index] = None
# return all face groups that are not null
# this is all the faces that are connected in their own lists.
return [fg for fg in face_groups if fg]
def edge_face_count_dict(mesh):
"""
:return: dict of edge keys with their value set to the number of
faces using each edge.
:rtype: dict
"""
face_edge_keys = [face.edge_keys for face in mesh.tessfaces]
face_edge_count = {}
for face_keys in face_edge_keys:
for key in face_keys:
try:
face_edge_count[key] += 1
except:
face_edge_count[key] = 1
return face_edge_count
def edge_face_count(mesh):
"""
:return: list face users for each item in mesh.edges.
:rtype: list
"""
edge_face_count = edge_face_count_dict(mesh)
get = dict.get
return [get(edge_face_count, ed.key, 0) for ed in mesh.edges]
def edge_loops_from_tessfaces(mesh, tessfaces=None, seams=()):
"""
Edge loops defined by faces
Takes me.tessfaces or a list of faces and returns the edge loops
These edge loops are the edges that sit between quads, so they dont touch
1 quad, note: not connected will make 2 edge loops,
both only containing 2 edges.
return a list of edge key lists
[[(0, 1), (4, 8), (3, 8)], ...]
:arg mesh: the mesh used to get edge loops from.
:type mesh: :class:`bpy.types.Mesh`
:arg tessfaces: optional face list to only use some of the meshes faces.
:type tessfaces: :class:`bpy.types.MeshTessFace`, sequence or or NoneType
:return: return a list of edge vertex index lists.
:rtype: list
"""
OTHER_INDEX = 2, 3, 0, 1 # opposite face index
if tessfaces is None:
tessfaces = mesh.tessfaces
edges = {}
for f in tessfaces:
if len(f.vertices) == 4:
edge_keys = f.edge_keys
for i, edkey in enumerate(f.edge_keys):
edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]])
for edkey in seams:
edges[edkey] = []
# Collect edge loops here
edge_loops = []
for edkey, ed_adj in edges.items():
if 0 < len(ed_adj) < 3: # 1 or 2
# Seek the first edge
context_loop = [edkey, ed_adj[0]]
edge_loops.append(context_loop)
if len(ed_adj) == 2:
other_dir = ed_adj[1]
else:
other_dir = None
ed_adj[:] = []
flipped = False
while 1:
# from knowing the last 2, look for the next.
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
# the original edge had 2 other edges
if other_dir and flipped == False:
flipped = True # only flip the list once
context_loop.reverse()
ed_adj[:] = []
context_loop.append(other_dir) # save 1 look-up
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
ed_adj[:] = []
break
else:
ed_adj[:] = []
break
i = ed_adj.index(context_loop[-2])
context_loop.append(ed_adj[not i])
# Dont look at this again
ed_adj[:] = []
return edge_loops
def edge_loops_from_edges(mesh, edges=None):
"""
Edge loops defined by edges
Takes me.edges or a list of edges and returns the edge loops
return a list of vertex indices.
[ [1, 6, 7, 2], ...]
closed loops have matching start and end values.
"""
line_polys = []
# Get edges not used by a face
if edges is None:
edges = mesh.edges
if not hasattr(edges, "pop"):
edges = edges[:]
while edges:
current_edge = edges.pop()
vert_end, vert_start = current_edge.vertices[:]
line_poly = [vert_start, vert_end]
ok = True
while ok:
ok = False
#for i, ed in enumerate(edges):
i = len(edges)
while i:
i -= 1
ed = edges[i]
v1, v2 = ed.vertices
if v1 == vert_end:
line_poly.append(v2)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v2 == vert_end:
line_poly.append(v1)
vert_end = line_poly[-1]
ok = 1
del edges[i]
#break
elif v1 == vert_start:
line_poly.insert(0, v2)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
elif v2 == vert_start:
line_poly.insert(0, v1)
vert_start = line_poly[0]
ok = 1
del edges[i]
#break
line_polys.append(line_poly)
return line_polys
def ngon_tessellate(from_data, indices, fix_loops=True):
'''
Takes a polyline of indices (fgon) and returns a list of face
indicie lists. Designed to be used for importers that need indices for an
fgon to create from existing verts.
from_data: either a mesh, or a list/tuple of vectors.
indices: a list of indices to use this list is the ordered closed polyline
to fill, and can be a subset of the data given.
fix_loops: If this is enabled polylines that use loops to make multiple
polylines are delt with correctly.
'''
from mathutils.geometry import tessellate_polygon
from mathutils import Vector
vector_to_tuple = Vector.to_tuple
if not indices:
return []
def mlen(co):
# manhatten length of a vector, faster then length
return abs(co[0]) + abs(co[1]) + abs(co[2])
def vert_treplet(v, i):
return v, vector_to_tuple(v, 6), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not fix_loops:
'''
Normal single concave loop filling
'''
if type(from_data) in {tuple, list}:
verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
# same as reversed(range(1, len(verts))):
for i in range(len(verts) - 1, 0, -1):
if verts[i][1] == verts[i - 1][0]:
verts.pop(i - 1)
fill = tessellate_polygon([verts])
else:
'''
Seperate this loop into multiple loops be finding edges that are
used twice. This is used by lightwave LWO files a lot
'''
if type(from_data) in {tuple, list}:
verts = [vert_treplet(Vector(from_data[i]), ii)
for ii, i in enumerate(indices)]
else:
verts = [vert_treplet(from_data.vertices[i].co, ii)
for ii, i in enumerate(indices)]
edges = [(i, i - 1) for i in range(len(verts))]
if edges:
edges[0] = (0, len(verts) - 1)
if not verts:
return []
edges_used = set()
edges_doubles = set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments = []
v_prev = verts[0]
context_loop = [v_prev]
loop_segments = [context_loop]
for v in verts:
if v != v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop = [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1] == v[1]:
#raise "as"
pass
else:
context_loop.append(v)
v_prev = v
# Now join loop segments
def join_seg(s1, s2):
if s2[-1][1] == s1[0][1]:
s1, s2 = s2, s1
elif s1[-1][1] == s2[0][1]:
pass
else:
return False
# If were stuill here s1 and s2 are 2 segments in the same polyline
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1] == s1[-1][1]: # remove endpoints double
s1.pop()
s2[:] = [] # Empty this segment s2 so we don't use it again.
return True
joining_segments = True
while joining_segments:
joining_segments = False
segcount = len(loop_segments)
for j in range(segcount - 1, -1, -1): # reversed(range(segcount)):
seg_j = loop_segments[j]
if seg_j:
for k in range(j - 1, -1, -1): # reversed(range(j)):
if not seg_j:
break
seg_k = loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments = True
loop_list = loop_segments
for verts in loop_list:
while verts and verts[0][1] == verts[-1][1]:
verts.pop()
loop_list = [verts for verts in loop_list if len(verts) > 2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map = [None] * len(indices)
ii = 0
for verts in loop_list:
if len(verts) > 2:
for i, vert in enumerate(verts):
vert_map[i + ii] = vert[2]
ii += len(verts)
fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list])
#draw_loops(loop_list)
#raise 'done loop'
# map to original indices
fill = [[vert_map[i] for i in reversed(f)] for f in fill]
if not fill:
print('Warning Cannot scanfill, fallback on a triangle fan.')
fill = [[0, i - 1, i] for i in range(2, len(indices))]
else:
# Use real scanfill.
# See if its flipped the wrong way.
flip = None
for fi in fill:
if flip is not None:
break
for i, vi in enumerate(fi):
if vi == 0 and fi[i - 1] == 1:
flip = False
break
elif vi == 1 and fi[i - 1] == 0:
flip = True
break
if not flip:
for i, fi in enumerate(fill):
fill[i] = tuple([ii for ii in reversed(fi)])
return fill
def face_random_points(num_points, tessfaces):
"""
Generates a list of random points over mesh tessfaces.
:arg num_points: the number of random points to generate on each face.
:type int:
:arg tessfaces: list of the faces to generate points on.
:type tessfaces: :class:`bpy.types.MeshTessFace`, sequence
:return: list of random points over all faces.
:rtype: list
"""
from random import random
from mathutils.geometry import area_tri
# Split all quads into 2 tris, tris remain unchanged
tri_faces = []
for f in tessfaces:
tris = []
verts = f.id_data.vertices
fv = f.vertices[:]
tris.append((verts[fv[0]].co,
verts[fv[1]].co,
verts[fv[2]].co,
))
if len(fv) == 4:
tris.append((verts[fv[0]].co,
verts[fv[3]].co,
verts[fv[2]].co,
))
tri_faces.append(tris)
# For each face, generate the required number of random points
sampled_points = [None] * (num_points * len(tessfaces))
for i, tf in enumerate(tri_faces):
for k in range(num_points):
# If this is a quad, we need to weight its 2 tris by their area
if len(tf) != 1:
area1 = area_tri(*tf[0])
area2 = area_tri(*tf[1])
area_tot = area1 + area2
area1 = area1 / area_tot
area2 = area2 / area_tot
vecs = tf[0 if (random() < area1) else 1]
else:
vecs = tf[0]
u1 = random()
u2 = random()
u_tot = u1 + u2
if u_tot > 1:
u1 = 1.0 - u1
u2 = 1.0 - u2
side1 = vecs[1] - vecs[0]
side2 = vecs[2] - vecs[0]
p = vecs[0] + u1 * side1 + u2 * side2
sampled_points[num_points * i + k] = p
return sampled_points
|