1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (c) 2007 The Zdeno Ash Miklas
*
* This source file is part of VideoTexture library
*
* Contributor(s):
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/VideoTexture/ImageRender.cpp
* \ingroup bgevideotex
*/
// implementation
#include "PyObjectPlus.h"
#include <structmember.h>
#include <float.h>
#include <math.h>
#include "GL/glew.h"
#include "KX_PythonInit.h"
#include "DNA_scene_types.h"
#include "RAS_CameraData.h"
#include "RAS_MeshObject.h"
#include "RAS_Polygon.h"
#include "BLI_math.h"
#include "ImageRender.h"
#include "ImageBase.h"
#include "BlendType.h"
#include "Exception.h"
#include "Texture.h"
ExceptionID SceneInvalid, CameraInvalid, ObserverInvalid;
ExceptionID MirrorInvalid, MirrorSizeInvalid, MirrorNormalInvalid, MirrorHorizontal, MirrorTooSmall;
ExpDesc SceneInvalidDesc(SceneInvalid, "Scene object is invalid");
ExpDesc CameraInvalidDesc(CameraInvalid, "Camera object is invalid");
ExpDesc ObserverInvalidDesc(ObserverInvalid, "Observer object is invalid");
ExpDesc MirrorInvalidDesc(MirrorInvalid, "Mirror object is invalid");
ExpDesc MirrorSizeInvalidDesc(MirrorSizeInvalid, "Mirror has no vertex or no size");
ExpDesc MirrorNormalInvalidDesc(MirrorNormalInvalid, "Cannot determine mirror plane");
ExpDesc MirrorHorizontalDesc(MirrorHorizontal, "Mirror is horizontal in local space");
ExpDesc MirrorTooSmallDesc(MirrorTooSmall, "Mirror is too small");
// constructor
ImageRender::ImageRender (KX_Scene *scene, KX_Camera * camera) :
ImageViewport(),
m_render(true),
m_scene(scene),
m_camera(camera),
m_owncamera(false),
m_observer(NULL),
m_mirror(NULL),
m_clip(100.f),
m_mirrorHalfWidth(0.f),
m_mirrorHalfHeight(0.f)
{
// initialize background color
setBackground(0, 0, 255, 255);
// retrieve rendering objects
m_engine = KX_GetActiveEngine();
m_rasterizer = m_engine->GetRasterizer();
m_canvas = m_engine->GetCanvas();
}
// destructor
ImageRender::~ImageRender (void)
{
if (m_owncamera)
m_camera->Release();
}
// set background color
void ImageRender::setBackground (int red, int green, int blue, int alpha)
{
m_background[0] = (red < 0) ? 0.f : (red > 255) ? 1.f : float(red)/255.f;
m_background[1] = (green < 0) ? 0.f : (green > 255) ? 1.f : float(green)/255.f;
m_background[2] = (blue < 0) ? 0.f : (blue > 255) ? 1.f : float(blue)/255.f;
m_background[3] = (alpha < 0) ? 0.f : (alpha > 255) ? 1.f : float(alpha)/255.f;
}
// capture image from viewport
void ImageRender::calcImage (unsigned int texId, double ts)
{
if (m_rasterizer->GetDrawingMode() != RAS_IRasterizer::KX_TEXTURED || // no need for texture
m_camera->GetViewport() || // camera must be inactive
m_camera == m_scene->GetActiveCamera())
{
// no need to compute texture in non texture rendering
m_avail = false;
return;
}
// render the scene from the camera
Render();
// get image from viewport
ImageViewport::calcImage(texId, ts);
// restore OpenGL state
m_canvas->EndFrame();
}
void ImageRender::Render()
{
RAS_FrameFrustum frustrum;
if (!m_render)
return;
if (m_mirror)
{
// mirror mode, compute camera frustrum, position and orientation
// convert mirror position and normal in world space
const MT_Matrix3x3 & mirrorObjWorldOri = m_mirror->GetSGNode()->GetWorldOrientation();
const MT_Point3 & mirrorObjWorldPos = m_mirror->GetSGNode()->GetWorldPosition();
const MT_Vector3 & mirrorObjWorldScale = m_mirror->GetSGNode()->GetWorldScaling();
MT_Point3 mirrorWorldPos =
mirrorObjWorldPos + mirrorObjWorldScale * (mirrorObjWorldOri * m_mirrorPos);
MT_Vector3 mirrorWorldZ = mirrorObjWorldOri * m_mirrorZ;
// get observer world position
const MT_Point3 & observerWorldPos = m_observer->GetSGNode()->GetWorldPosition();
// get plane D term = mirrorPos . normal
MT_Scalar mirrorPlaneDTerm = mirrorWorldPos.dot(mirrorWorldZ);
// compute distance of observer to mirror = D - observerPos . normal
MT_Scalar observerDistance = mirrorPlaneDTerm - observerWorldPos.dot(mirrorWorldZ);
// if distance < 0.01 => observer is on wrong side of mirror, don't render
if (observerDistance < 0.01)
return;
// set camera world position = observerPos + normal * 2 * distance
MT_Point3 cameraWorldPos = observerWorldPos + (MT_Scalar(2.0)*observerDistance)*mirrorWorldZ;
m_camera->GetSGNode()->SetLocalPosition(cameraWorldPos);
// set camera orientation: z=normal, y=mirror_up in world space, x= y x z
MT_Vector3 mirrorWorldY = mirrorObjWorldOri * m_mirrorY;
MT_Vector3 mirrorWorldX = mirrorObjWorldOri * m_mirrorX;
MT_Matrix3x3 cameraWorldOri(
mirrorWorldX[0], mirrorWorldY[0], mirrorWorldZ[0],
mirrorWorldX[1], mirrorWorldY[1], mirrorWorldZ[1],
mirrorWorldX[2], mirrorWorldY[2], mirrorWorldZ[2]);
m_camera->GetSGNode()->SetLocalOrientation(cameraWorldOri);
m_camera->GetSGNode()->UpdateWorldData(0.0);
// compute camera frustrum:
// get position of mirror relative to camera: offset = mirrorPos-cameraPos
MT_Vector3 mirrorOffset = mirrorWorldPos - cameraWorldPos;
// convert to camera orientation
mirrorOffset = mirrorOffset * cameraWorldOri;
// scale mirror size to world scale:
// get closest local axis for mirror Y and X axis and scale height and width by local axis scale
MT_Scalar x, y;
x = fabs(m_mirrorY[0]);
y = fabs(m_mirrorY[1]);
float height = (x > y) ?
((x > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
((y > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
x = fabs(m_mirrorX[0]);
y = fabs(m_mirrorX[1]);
float width = (x > y) ?
((x > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
((y > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
width *= m_mirrorHalfWidth;
height *= m_mirrorHalfHeight;
// left = offsetx-width
// right = offsetx+width
// top = offsety+height
// bottom = offsety-height
// near = -offsetz
// far = near+100
frustrum.x1 = mirrorOffset[0]-width;
frustrum.x2 = mirrorOffset[0]+width;
frustrum.y1 = mirrorOffset[1]-height;
frustrum.y2 = mirrorOffset[1]+height;
frustrum.camnear = -mirrorOffset[2];
frustrum.camfar = -mirrorOffset[2]+m_clip;
}
// Store settings to be restored later
const RAS_IRasterizer::StereoMode stereomode = m_rasterizer->GetStereoMode();
RAS_Rect area = m_canvas->GetWindowArea();
// The screen area that ImageViewport will copy is also the rendering zone
m_canvas->SetViewPort(m_position[0], m_position[1], m_position[0]+m_capSize[0]-1, m_position[1]+m_capSize[1]-1);
m_canvas->ClearColor(m_background[0], m_background[1], m_background[2], m_background[3]);
m_canvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER|RAS_ICanvas::DEPTH_BUFFER);
m_rasterizer->BeginFrame(m_engine->GetClockTime());
m_engine->SetWorldSettings(m_scene->GetWorldInfo());
m_rasterizer->SetAuxilaryClientInfo(m_scene);
m_rasterizer->DisplayFog();
// matrix calculation, don't apply any of the stereo mode
m_rasterizer->SetStereoMode(RAS_IRasterizer::RAS_STEREO_NOSTEREO);
if (m_mirror)
{
// frustrum was computed above
// get frustrum matrix and set projection matrix
MT_Matrix4x4 projmat = m_rasterizer->GetFrustumMatrix(
frustrum.x1, frustrum.x2, frustrum.y1, frustrum.y2, frustrum.camnear, frustrum.camfar);
m_camera->SetProjectionMatrix(projmat);
}
else if (m_camera->hasValidProjectionMatrix()) {
m_rasterizer->SetProjectionMatrix(m_camera->GetProjectionMatrix());
}
else {
float lens = m_camera->GetLens();
float sensor_x = m_camera->GetSensorWidth();
float sensor_y = m_camera->GetSensorHeight();
bool orthographic = !m_camera->GetCameraData()->m_perspective;
float nearfrust = m_camera->GetCameraNear();
float farfrust = m_camera->GetCameraFar();
float aspect_ratio = 1.0f;
Scene *blenderScene = m_scene->GetBlenderScene();
MT_Matrix4x4 projmat;
// compute the aspect ratio from frame blender scene settings so that render to texture
// works the same in Blender and in Blender player
if (blenderScene->r.ysch != 0)
aspect_ratio = float(blenderScene->r.xsch*blenderScene->r.xasp) / float(blenderScene->r.ysch*blenderScene->r.yasp);
if (orthographic) {
RAS_FramingManager::ComputeDefaultOrtho(
nearfrust,
farfrust,
m_camera->GetScale(),
aspect_ratio,
m_camera->GetSensorFit(),
frustrum
);
projmat = m_rasterizer->GetOrthoMatrix(
frustrum.x1, frustrum.x2, frustrum.y1, frustrum.y2, frustrum.camnear, frustrum.camfar);
}
else {
RAS_FramingManager::ComputeDefaultFrustum(
nearfrust,
farfrust,
lens,
sensor_x,
sensor_y,
RAS_SENSORFIT_AUTO,
aspect_ratio,
frustrum);
projmat = m_rasterizer->GetFrustumMatrix(
frustrum.x1, frustrum.x2, frustrum.y1, frustrum.y2, frustrum.camnear, frustrum.camfar);
}
m_camera->SetProjectionMatrix(projmat);
}
MT_Transform camtrans(m_camera->GetWorldToCamera());
MT_Matrix4x4 viewmat(camtrans);
m_rasterizer->SetViewMatrix(viewmat, m_camera->NodeGetWorldOrientation(), m_camera->NodeGetWorldPosition(), m_camera->GetCameraData()->m_perspective);
m_camera->SetModelviewMatrix(viewmat);
// restore the stereo mode now that the matrix is computed
m_rasterizer->SetStereoMode(stereomode);
m_scene->CalculateVisibleMeshes(m_rasterizer,m_camera);
m_scene->UpdateAnimations(m_engine->GetFrameTime());
m_scene->RenderBuckets(camtrans, m_rasterizer);
m_scene->RenderFonts();
// restore the canvas area now that the render is completed
m_canvas->GetWindowArea() = area;
}
// cast Image pointer to ImageRender
inline ImageRender * getImageRender (PyImage *self)
{ return static_cast<ImageRender*>(self->m_image); }
// python methods
// Blender Scene type
static BlendType<KX_Scene> sceneType ("KX_Scene");
// Blender Camera type
static BlendType<KX_Camera> cameraType ("KX_Camera");
// object initialization
static int ImageRender_init(PyObject *pySelf, PyObject *args, PyObject *kwds)
{
// parameters - scene object
PyObject *scene;
// camera object
PyObject *camera;
// parameter keywords
static const char *kwlist[] = {"sceneObj", "cameraObj", NULL};
// get parameters
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO",
const_cast<char**>(kwlist), &scene, &camera))
return -1;
try
{
// get scene pointer
KX_Scene * scenePtr (NULL);
if (scene != NULL) scenePtr = sceneType.checkType(scene);
// throw exception if scene is not available
if (scenePtr == NULL) THRWEXCP(SceneInvalid, S_OK);
// get camera pointer
KX_Camera * cameraPtr (NULL);
if (camera != NULL) cameraPtr = cameraType.checkType(camera);
// throw exception if camera is not available
if (cameraPtr == NULL) THRWEXCP(CameraInvalid, S_OK);
// get pointer to image structure
PyImage *self = reinterpret_cast<PyImage*>(pySelf);
// create source object
if (self->m_image != NULL) delete self->m_image;
self->m_image = new ImageRender(scenePtr, cameraPtr);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
// initialization succeded
return 0;
}
// get background color
static PyObject *getBackground (PyImage *self, void *closure)
{
return Py_BuildValue("[BBBB]",
getImageRender(self)->getBackground(0),
getImageRender(self)->getBackground(1),
getImageRender(self)->getBackground(2),
getImageRender(self)->getBackground(3));
}
// set color
static int setBackground(PyImage *self, PyObject *value, void *closure)
{
// check validity of parameter
if (value == NULL || !PySequence_Check(value) || PySequence_Size(value) != 4
|| !PyLong_Check(PySequence_Fast_GET_ITEM(value, 0))
|| !PyLong_Check(PySequence_Fast_GET_ITEM(value, 1))
|| !PyLong_Check(PySequence_Fast_GET_ITEM(value, 2))
|| !PyLong_Check(PySequence_Fast_GET_ITEM(value, 3)))
{
PyErr_SetString(PyExc_TypeError, "The value must be a sequence of 4 integer between 0 and 255");
return -1;
}
// set background color
getImageRender(self)->setBackground(
(unsigned char)(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 0))),
(unsigned char)(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 1))),
(unsigned char)(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 2))),
(unsigned char)(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 3))));
// success
return 0;
}
// methods structure
static PyMethodDef imageRenderMethods[] =
{ // methods from ImageBase class
{"refresh", (PyCFunction)Image_refresh, METH_NOARGS, "Refresh image - invalidate its current content"},
{NULL}
};
// attributes structure
static PyGetSetDef imageRenderGetSets[] =
{
{(char*)"background", (getter)getBackground, (setter)setBackground, (char*)"background color", NULL},
// attribute from ImageViewport
{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of render area", NULL},
{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to render", NULL},
// attributes from ImageBase class
{(char*)"valid", (getter)Image_valid, NULL, (char*)"bool to tell if an image is available", NULL},
{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbor)", NULL},
{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
{(char*)"zbuff", (getter)Image_getZbuff, (setter)Image_setZbuff, (char*)"use depth buffer as texture", NULL},
{(char*)"depth", (getter)Image_getDepth, (setter)Image_setDepth, (char*)"get depth information from z-buffer using unsigned int precision", NULL},
{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
{NULL}
};
// define python type
PyTypeObject ImageRenderType = {
PyVarObject_HEAD_INIT(NULL, 0)
"VideoTexture.ImageRender", /*tp_name*/
sizeof(PyImage), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Image_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
&imageBufferProcs, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Image source from render", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
imageRenderMethods, /* tp_methods */
0, /* tp_members */
imageRenderGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)ImageRender_init, /* tp_init */
0, /* tp_alloc */
Image_allocNew, /* tp_new */
};
// object initialization
static int ImageMirror_init(PyObject *pySelf, PyObject *args, PyObject *kwds)
{
// parameters - scene object
PyObject *scene;
// reference object for mirror
PyObject *observer;
// object holding the mirror
PyObject *mirror;
// material of the mirror
short materialID = 0;
// parameter keywords
static const char *kwlist[] = {"scene", "observer", "mirror", "material", NULL};
// get parameters
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OOO|h",
const_cast<char**>(kwlist), &scene, &observer, &mirror, &materialID))
return -1;
try
{
// get scene pointer
KX_Scene * scenePtr (NULL);
if (scene != NULL && PyObject_TypeCheck(scene, &KX_Scene::Type))
scenePtr = static_cast<KX_Scene*>BGE_PROXY_REF(scene);
else
THRWEXCP(SceneInvalid, S_OK);
if (scenePtr==NULL) /* in case the python proxy reference is invalid */
THRWEXCP(SceneInvalid, S_OK);
// get observer pointer
KX_GameObject * observerPtr (NULL);
if (observer != NULL && PyObject_TypeCheck(observer, &KX_GameObject::Type))
observerPtr = static_cast<KX_GameObject*>BGE_PROXY_REF(observer);
else if (observer != NULL && PyObject_TypeCheck(observer, &KX_Camera::Type))
observerPtr = static_cast<KX_Camera*>BGE_PROXY_REF(observer);
else
THRWEXCP(ObserverInvalid, S_OK);
if (observerPtr==NULL) /* in case the python proxy reference is invalid */
THRWEXCP(ObserverInvalid, S_OK);
// get mirror pointer
KX_GameObject * mirrorPtr (NULL);
if (mirror != NULL && PyObject_TypeCheck(mirror, &KX_GameObject::Type))
mirrorPtr = static_cast<KX_GameObject*>BGE_PROXY_REF(mirror);
else
THRWEXCP(MirrorInvalid, S_OK);
if (mirrorPtr==NULL) /* in case the python proxy reference is invalid */
THRWEXCP(MirrorInvalid, S_OK);
// locate the material in the mirror
RAS_IPolyMaterial * material = getMaterial(mirror, materialID);
if (material == NULL)
THRWEXCP(MaterialNotAvail, S_OK);
// get pointer to image structure
PyImage *self = reinterpret_cast<PyImage*>(pySelf);
// create source object
if (self->m_image != NULL)
{
delete self->m_image;
self->m_image = NULL;
}
self->m_image = new ImageRender(scenePtr, observerPtr, mirrorPtr, material);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
// initialization succeded
return 0;
}
// get background color
static PyObject *getClip (PyImage *self, void *closure)
{
return PyFloat_FromDouble(getImageRender(self)->getClip());
}
// set clip
static int setClip(PyImage *self, PyObject *value, void *closure)
{
// check validity of parameter
double clip;
if (value == NULL || !PyFloat_Check(value) || (clip = PyFloat_AsDouble(value)) < 0.01 || clip > 5000.0)
{
PyErr_SetString(PyExc_TypeError, "The value must be an float between 0.01 and 5000");
return -1;
}
// set background color
getImageRender(self)->setClip(float(clip));
// success
return 0;
}
// attributes structure
static PyGetSetDef imageMirrorGetSets[] =
{
{(char*)"clip", (getter)getClip, (setter)setClip, (char*)"clipping distance", NULL},
// attribute from ImageRender
{(char*)"background", (getter)getBackground, (setter)setBackground, (char*)"background color", NULL},
// attribute from ImageViewport
{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of render area", NULL},
{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to render", NULL},
// attributes from ImageBase class
{(char*)"valid", (getter)Image_valid, NULL, (char*)"bool to tell if an image is available", NULL},
{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbor)", NULL},
{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
{(char*)"zbuff", (getter)Image_getZbuff, (setter)Image_setZbuff, (char*)"use depth buffer as texture", NULL},
{(char*)"depth", (getter)Image_getDepth, (setter)Image_setDepth, (char*)"get depth information from z-buffer using unsigned int precision", NULL},
{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
{NULL}
};
// constructor
ImageRender::ImageRender (KX_Scene *scene, KX_GameObject *observer, KX_GameObject *mirror, RAS_IPolyMaterial *mat) :
ImageViewport(),
m_render(false),
m_scene(scene),
m_observer(observer),
m_mirror(mirror),
m_clip(100.f)
{
// this constructor is used for automatic planar mirror
// create a camera, take all data by default, in any case we will recompute the frustrum on each frame
RAS_CameraData camdata;
vector<RAS_TexVert*> mirrorVerts;
vector<RAS_TexVert*>::iterator it;
float mirrorArea = 0.f;
float mirrorNormal[3] = {0.f, 0.f, 0.f};
float mirrorUp[3];
float dist, vec[3], axis[3];
float zaxis[3] = {0.f, 0.f, 1.f};
float yaxis[3] = {0.f, 1.f, 0.f};
float mirrorMat[3][3];
float left, right, top, bottom, back;
// make sure this camera will delete its node
m_camera= new KX_Camera(scene, KX_Scene::m_callbacks, camdata, true, true);
m_camera->SetName("__mirror__cam__");
// don't add the camera to the scene object list, it doesn't need to be accessible
m_owncamera = true;
// retrieve rendering objects
m_engine = KX_GetActiveEngine();
m_rasterizer = m_engine->GetRasterizer();
m_canvas = m_engine->GetCanvas();
// locate the vertex assigned to mat and do following calculation in mesh coordinates
for (int meshIndex = 0; meshIndex < mirror->GetMeshCount(); meshIndex++)
{
RAS_MeshObject* mesh = mirror->GetMesh(meshIndex);
int numPolygons = mesh->NumPolygons();
for (int polygonIndex=0; polygonIndex < numPolygons; polygonIndex++)
{
RAS_Polygon* polygon = mesh->GetPolygon(polygonIndex);
if (polygon->GetMaterial()->GetPolyMaterial() == mat)
{
RAS_TexVert *v1, *v2, *v3, *v4;
float normal[3];
float area;
// this polygon is part of the mirror,
v1 = polygon->GetVertex(0);
v2 = polygon->GetVertex(1);
v3 = polygon->GetVertex(2);
mirrorVerts.push_back(v1);
mirrorVerts.push_back(v2);
mirrorVerts.push_back(v3);
if (polygon->VertexCount() == 4) {
v4 = polygon->GetVertex(3);
mirrorVerts.push_back(v4);
area = normal_quad_v3(normal,(float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ(), (float*)v4->getXYZ());
}
else {
area = normal_tri_v3(normal,(float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ());
}
area = fabs(area);
mirrorArea += area;
mul_v3_fl(normal, area);
add_v3_v3v3(mirrorNormal, mirrorNormal, normal);
}
}
}
if (mirrorVerts.size() == 0 || mirrorArea < FLT_EPSILON)
{
// no vertex or zero size mirror
THRWEXCP(MirrorSizeInvalid, S_OK);
}
// compute average normal of mirror faces
mul_v3_fl(mirrorNormal, 1.0f/mirrorArea);
if (normalize_v3(mirrorNormal) == 0.f)
{
// no normal
THRWEXCP(MirrorNormalInvalid, S_OK);
}
// the mirror plane has an equation of the type ax+by+cz = d where (a,b,c) is the normal vector
// if the mirror is more vertical then horizontal, the Z axis is the up direction.
// otherwise the Y axis is the up direction.
// If the mirror is not perfectly vertical(horizontal), the Z(Y) axis projection on the mirror
// plan by the normal will be the up direction.
if (fabsf(mirrorNormal[2]) > fabsf(mirrorNormal[1]) &&
fabsf(mirrorNormal[2]) > fabsf(mirrorNormal[0]))
{
// the mirror is more horizontal than vertical
copy_v3_v3(axis, yaxis);
}
else
{
// the mirror is more vertical than horizontal
copy_v3_v3(axis, zaxis);
}
dist = dot_v3v3(mirrorNormal, axis);
if (fabsf(dist) < FLT_EPSILON)
{
// the mirror is already fully aligned with up axis
copy_v3_v3(mirrorUp, axis);
}
else
{
// projection of axis to mirror plane through normal
copy_v3_v3(vec, mirrorNormal);
mul_v3_fl(vec, dist);
sub_v3_v3v3(mirrorUp, axis, vec);
if (normalize_v3(mirrorUp) == 0.f)
{
// should not happen
THRWEXCP(MirrorHorizontal, S_OK);
return;
}
}
// compute rotation matrix between local coord and mirror coord
// to match camera orientation, we select mirror z = -normal, y = up, x = y x z
negate_v3_v3(mirrorMat[2], mirrorNormal);
copy_v3_v3(mirrorMat[1], mirrorUp);
cross_v3_v3v3(mirrorMat[0], mirrorMat[1], mirrorMat[2]);
// transpose to make it a orientation matrix from local space to mirror space
transpose_m3(mirrorMat);
// transform all vertex to plane coordinates and determine mirror position
left = FLT_MAX;
right = -FLT_MAX;
bottom = FLT_MAX;
top = -FLT_MAX;
back = -FLT_MAX; // most backward vertex (=highest Z coord in mirror space)
for (it = mirrorVerts.begin(); it != mirrorVerts.end(); it++)
{
copy_v3_v3(vec, (float*)(*it)->getXYZ());
mul_m3_v3(mirrorMat, vec);
if (vec[0] < left)
left = vec[0];
if (vec[0] > right)
right = vec[0];
if (vec[1] < bottom)
bottom = vec[1];
if (vec[1] > top)
top = vec[1];
if (vec[2] > back)
back = vec[2];
}
// now store this information in the object for later rendering
m_mirrorHalfWidth = (right-left)*0.5f;
m_mirrorHalfHeight = (top-bottom)*0.5f;
if (m_mirrorHalfWidth < 0.01f || m_mirrorHalfHeight < 0.01f)
{
// mirror too small
THRWEXCP(MirrorTooSmall, S_OK);
}
// mirror position in mirror coord
vec[0] = (left+right)*0.5f;
vec[1] = (top+bottom)*0.5f;
vec[2] = back;
// convert it in local space: transpose again the matrix to get back to mirror to local transform
transpose_m3(mirrorMat);
mul_m3_v3(mirrorMat, vec);
// mirror position in local space
m_mirrorPos.setValue(vec[0], vec[1], vec[2]);
// mirror normal vector (pointed towards the back of the mirror) in local space
m_mirrorZ.setValue(-mirrorNormal[0], -mirrorNormal[1], -mirrorNormal[2]);
m_mirrorY.setValue(mirrorUp[0], mirrorUp[1], mirrorUp[2]);
m_mirrorX = m_mirrorY.cross(m_mirrorZ);
m_render = true;
setBackground(0, 0, 255, 255);
}
// define python type
PyTypeObject ImageMirrorType = {
PyVarObject_HEAD_INIT(NULL, 0)
"VideoTexture.ImageMirror", /*tp_name*/
sizeof(PyImage), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Image_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
&imageBufferProcs, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Image source from mirror", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
imageRenderMethods, /* tp_methods */
0, /* tp_members */
imageMirrorGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)ImageMirror_init, /* tp_init */
0, /* tp_alloc */
Image_allocNew, /* tp_new */
};
|