1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
/* SPDX-FileCopyrightText: 2009 Benoit Bolsee
*
* SPDX-License-Identifier: LGPL-2.1-or-later */
/** \file
* \ingroup intern_itasc
*/
#include "Armature.hpp"
#include <algorithm>
#include <string.h>
#include <stdlib.h>
namespace iTaSC {
#if 0
// a joint constraint is characterized by 5 values: tolerance, K, alpha, yd, yddot
static const unsigned int constraintCacheSize = 5;
#endif
std::string Armature::m_root = "root";
Armature::Armature():
ControlledObject(),
m_tree(),
m_njoint(0),
m_nconstraint(0),
m_noutput(0),
m_neffector(0),
m_finalized(false),
m_cache(NULL),
m_buf(NULL),
m_qCCh(-1),
m_qCTs(0),
m_yCCh(-1),
#if 0
m_yCTs(0),
#endif
m_qKdl(),
m_oldqKdl(),
m_newqKdl(),
m_qdotKdl(),
m_jac(NULL),
m_armlength(0.0),
m_jacsolver(NULL),
m_fksolver(NULL)
{
}
Armature::~Armature()
{
if (m_jac)
delete m_jac;
if (m_jacsolver)
delete m_jacsolver;
if (m_fksolver)
delete m_fksolver;
for (JointConstraintList::iterator it=m_constraints.begin(); it != m_constraints.end(); it++) {
if (*it != NULL)
delete (*it);
}
if (m_buf)
delete [] m_buf;
m_constraints.clear();
}
Armature::JointConstraint_struct::JointConstraint_struct(SegmentMap::const_iterator _segment, unsigned int _y_nr, ConstraintCallback _function, void* _param, bool _freeParam, bool _substep):
segment(_segment), value(), values(), function(_function), y_nr(_y_nr), param(_param), freeParam(_freeParam), substep(_substep)
{
memset(values, 0, sizeof(values));
memset(value, 0, sizeof(value));
values[0].feedback = 20.0;
values[1].feedback = 20.0;
values[2].feedback = 20.0;
values[0].tolerance = 1.0;
values[1].tolerance = 1.0;
values[2].tolerance = 1.0;
values[0].values = &value[0];
values[1].values = &value[1];
values[2].values = &value[2];
values[0].number = 1;
values[1].number = 1;
values[2].number = 1;
switch (segment->second.segment.getJoint().getType()) {
case Joint::RotX:
value[0].id = ID_JOINT_RX;
values[0].id = ID_JOINT_RX;
v_nr = 1;
break;
case Joint::RotY:
value[0].id = ID_JOINT_RY;
values[0].id = ID_JOINT_RY;
v_nr = 1;
break;
case Joint::RotZ:
value[0].id = ID_JOINT_RZ;
values[0].id = ID_JOINT_RZ;
v_nr = 1;
break;
case Joint::TransX:
value[0].id = ID_JOINT_TX;
values[0].id = ID_JOINT_TX;
v_nr = 1;
break;
case Joint::TransY:
value[0].id = ID_JOINT_TY;
values[0].id = ID_JOINT_TY;
v_nr = 1;
break;
case Joint::TransZ:
value[0].id = ID_JOINT_TZ;
values[0].id = ID_JOINT_TZ;
v_nr = 1;
break;
case Joint::Sphere:
values[0].id = value[0].id = ID_JOINT_RX;
values[1].id = value[1].id = ID_JOINT_RY;
values[2].id = value[2].id = ID_JOINT_RZ;
v_nr = 3;
break;
case Joint::Swing:
values[0].id = value[0].id = ID_JOINT_RX;
values[1].id = value[1].id = ID_JOINT_RZ;
v_nr = 2;
break;
case Joint::None:
break;
}
}
Armature::JointConstraint_struct::~JointConstraint_struct()
{
if (freeParam && param)
free(param);
}
void Armature::initCache(Cache *_cache)
{
m_cache = _cache;
m_qCCh = -1;
m_yCCh = -1;
m_buf = NULL;
if (m_cache) {
// add a special channel for the joint
m_qCCh = m_cache->addChannel(this, "q", m_qKdl.rows()*sizeof(double));
#if 0
// for the constraints, instead of creating many different channels, we will
// create a single channel for all the constraints
if (m_nconstraint) {
m_yCCh = m_cache->addChannel(this, "y", m_nconstraint*constraintCacheSize*sizeof(double));
m_buf = new double[m_nconstraint*constraintCacheSize];
}
// store the initial cache position at timestamp 0
pushConstraints(0);
#endif
pushQ(0);
}
}
void Armature::pushQ(CacheTS timestamp)
{
if (m_qCCh >= 0) {
// try to keep the cache if the joints are the same
m_cache->addCacheVectorIfDifferent(this, m_qCCh, timestamp, m_qKdl(0), m_qKdl.rows(), KDL::epsilon);
m_qCTs = timestamp;
}
}
/* return true if a m_cache position was loaded */
bool Armature::popQ(CacheTS timestamp)
{
if (m_qCCh >= 0) {
double* item;
item = (double *)m_cache->getPreviousCacheItem(this, m_qCCh, ×tamp);
if (item && m_qCTs != timestamp) {
double* q = m_qKdl(0);
memcpy(q, item, m_qKdl.rows()*sizeof(double));
m_qCTs = timestamp;
// changing the joint => recompute the jacobian
updateJacobian();
}
return (item) ? true : false;
}
return true;
}
#if 0
void Armature::pushConstraints(CacheTS timestamp)
{
if (m_yCCh >= 0) {
double *buf = NULL;
if (m_nconstraint) {
double *item = m_buf;
for (unsigned int i=0; i<m_nconstraint; i++) {
JointConstraint_struct* pConstraint = m_constraints[i];
*item++ = pConstraint->values.feedback;
*item++ = pConstraint->values.tolerance;
*item++ = pConstraint->value.yd;
*item++ = pConstraint->value.yddot;
*item++ = pConstraint->values.alpha;
}
}
m_cache->addCacheVectorIfDifferent(this, m_yCCh, timestamp, m_buf, m_nconstraint*constraintCacheSize, KDL::epsilon);
m_yCTs = timestamp;
}
}
/* return true if a cache position was loaded */
bool Armature::popConstraints(CacheTS timestamp)
{
if (m_yCCh >= 0) {
double *item = (double*)m_cache->getPreviousCacheItem(this, m_yCCh, ×tamp);
if (item && m_yCTs != timestamp) {
for (unsigned int i=0; i<m_nconstraint; i++) {
JointConstraint_struct* pConstraint = m_constraints[i];
if (pConstraint->function != Joint1DOFLimitCallback) {
pConstraint->values.feedback = *item++;
pConstraint->values.tolerance = *item++;
pConstraint->value.yd = *item++;
pConstraint->value.yddot = *item++;
pConstraint->values.alpha = *item++;
} else {
item += constraintCacheSize;
}
}
m_yCTs = timestamp;
}
return (item) ? true : false;
}
return true;
}
#endif
bool Armature::addSegment(const std::string& segment_name, const std::string& hook_name, const Joint& joint, const double& q_rest, const Frame& f_tip, const Inertia& M)
{
if (m_finalized)
return false;
Segment segment(joint, f_tip, M);
if (!m_tree.addSegment(segment, segment_name, hook_name))
return false;
int ndof = joint.getNDof();
for (int dof=0; dof<ndof; dof++) {
Joint_struct js(joint.getType(), ndof, (&q_rest)[dof]);
m_joints.push_back(js);
}
m_njoint+=ndof;
return true;
}
bool Armature::getSegment(const std::string& name, const unsigned int q_size, const Joint* &p_joint, double &q_rest, double &q, const Frame* &p_tip)
{
SegmentMap::const_iterator sit = m_tree.getSegment(name);
if (sit == m_tree.getSegments().end())
return false;
p_joint = &sit->second.segment.getJoint();
if (q_size < p_joint->getNDof())
return false;
p_tip = &sit->second.segment.getFrameToTip();
for (unsigned int dof=0; dof<p_joint->getNDof(); dof++) {
(&q_rest)[dof] = m_joints[sit->second.q_nr+dof].rest;
(&q)[dof] = m_qKdl[sit->second.q_nr+dof];
}
return true;
}
double Armature::getMaxJointChange()
{
if (!m_finalized)
return 0.0;
double maxJoint = 0.0;
for (unsigned int i=0; i<m_njoint; i++) {
// this is a very rough calculation, it doesn't work well for spherical joint
double joint = fabs(m_oldqKdl[i]-m_qKdl[i]);
if (maxJoint < joint)
maxJoint = joint;
}
return maxJoint;
}
double Armature::getMaxEndEffectorChange()
{
if (!m_finalized)
return 0.0;
double maxDelta = 0.0;
double delta;
Twist twist;
for (unsigned int i = 0; i<m_neffector; i++) {
twist = diff(m_effectors[i].pose, m_effectors[i].oldpose);
delta = twist.rot.Norm();
if (delta > maxDelta)
maxDelta = delta;
delta = twist.vel.Norm();
if (delta > maxDelta)
maxDelta = delta;
}
return maxDelta;
}
int Armature::addConstraint(const std::string& segment_name, ConstraintCallback _function, void* _param, bool _freeParam, bool _substep)
{
SegmentMap::const_iterator segment_it = m_tree.getSegment(segment_name);
// not suitable for NDof joints
if (segment_it == m_tree.getSegments().end()) {
if (_freeParam && _param)
free(_param);
return -1;
}
JointConstraintList::iterator constraint_it;
JointConstraint_struct* pConstraint;
int iConstraint;
for (iConstraint=0, constraint_it=m_constraints.begin(); constraint_it != m_constraints.end(); constraint_it++, iConstraint++) {
pConstraint = *constraint_it;
if (pConstraint->segment == segment_it) {
// redefining a constraint
if (pConstraint->freeParam && pConstraint->param) {
free(pConstraint->param);
}
pConstraint->function = _function;
pConstraint->param = _param;
pConstraint->freeParam = _freeParam;
pConstraint->substep = _substep;
return iConstraint;
}
}
if (m_finalized) {
if (_freeParam && _param)
free(_param);
return -1;
}
// new constraint, append
pConstraint = new JointConstraint_struct(segment_it, m_noutput, _function, _param, _freeParam, _substep);
m_constraints.push_back(pConstraint);
m_noutput += pConstraint->v_nr;
return m_nconstraint++;
}
int Armature::addLimitConstraint(const std::string& segment_name, unsigned int dof, double _min, double _max)
{
SegmentMap::const_iterator segment_it = m_tree.getSegment(segment_name);
if (segment_it == m_tree.getSegments().end())
return -1;
const Joint& joint = segment_it->second.segment.getJoint();
if (joint.getNDof() != 1 && joint.getType() != Joint::Swing) {
// not suitable for Sphere joints
return -1;
}
if ((joint.getNDof() == 1 && dof > 0) || (joint.getNDof() == 2 && dof > 1))
return -1;
Joint_struct& p_joint = m_joints[segment_it->second.q_nr+dof];
p_joint.min = _min;
p_joint.max = _max;
p_joint.useLimit = true;
return 0;
}
int Armature::addEndEffector(const std::string& name)
{
const SegmentMap& segments = m_tree.getSegments();
if (segments.find(name) == segments.end())
return -1;
EffectorList::const_iterator it;
int ee;
for (it=m_effectors.begin(), ee=0; it!=m_effectors.end(); it++, ee++) {
if (it->name == name)
return ee;
}
if (m_finalized)
return -1;
Effector_struct effector(name);
m_effectors.push_back(effector);
return m_neffector++;
}
bool Armature::finalize()
{
unsigned int i, j, c;
if (m_finalized)
return true;
if (m_njoint == 0)
return false;
initialize(m_njoint, m_noutput, m_neffector);
for (i=c=0; i<m_nconstraint; i++) {
JointConstraint_struct* pConstraint = m_constraints[i];
for (j=0; j<pConstraint->v_nr; j++, c++) {
m_Cq(c,pConstraint->segment->second.q_nr+j) = 1.0;
m_Wy(c) = pConstraint->values[j].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
}
}
m_jacsolver= new KDL::TreeJntToJacSolver(m_tree);
m_fksolver = new KDL::TreeFkSolverPos_recursive(m_tree);
m_jac = new Jacobian(m_njoint);
m_qKdl.resize(m_njoint);
m_oldqKdl.resize(m_njoint);
m_newqKdl.resize(m_njoint);
m_qdotKdl.resize(m_njoint);
for (i=0; i<m_njoint; i++) {
m_newqKdl[i] = m_oldqKdl[i] = m_qKdl[i] = m_joints[i].rest;
}
updateJacobian();
// estimate the maximum size of the robot arms
double length;
m_armlength = 0.0;
for (i=0; i<m_neffector; i++) {
length = 0.0;
KDL::SegmentMap::value_type const *sit = m_tree.getSegmentPtr(m_effectors[i].name);
while (sit->first != "root") {
Frame tip = sit->second.segment.pose(m_qKdl(sit->second.q_nr));
length += tip.p.Norm();
sit = sit->second.parent;
}
if (length > m_armlength)
m_armlength = length;
}
if (m_armlength < KDL::epsilon)
m_armlength = KDL::epsilon;
m_finalized = true;
return true;
}
void Armature::pushCache(const Timestamp& timestamp)
{
if (!timestamp.substep && timestamp.cache) {
pushQ(timestamp.cacheTimestamp);
//pushConstraints(timestamp.cacheTimestamp);
}
}
bool Armature::setJointArray(const KDL::JntArray& joints)
{
if (!m_finalized)
return false;
if (joints.rows() != m_qKdl.rows())
return false;
m_qKdl = joints;
updateJacobian();
return true;
}
const KDL::JntArray& Armature::getJointArray()
{
return m_qKdl;
}
bool Armature::updateJoint(const Timestamp& timestamp, JointLockCallback& callback)
{
if (!m_finalized)
return false;
// integration and joint limit
// for spherical joint we must use a more sophisticated method
unsigned int q_nr;
double* qdot=m_qdotKdl(0);
double* q=m_qKdl(0);
double* newq=m_newqKdl(0);
double norm, qx, qz, CX, CZ, sx, sz;
bool locked = false;
int unlocked = 0;
for (q_nr=0; q_nr<m_nq; ++q_nr)
qdot[q_nr]=m_qdot[q_nr];
for (q_nr=0; q_nr<m_nq; ) {
Joint_struct* joint = &m_joints[q_nr];
if (!joint->locked) {
switch (joint->type) {
case KDL::Joint::Swing:
{
KDL::Rotation base = KDL::Rot(KDL::Vector(q[0],0.0,q[1]));
(base*KDL::Rot(KDL::Vector(qdot[0],0.0,qdot[1])*timestamp.realTimestep)).GetXZRot().GetValue(newq);
if (joint[0].useLimit) {
if (joint[1].useLimit) {
// elliptical limit
sx = sz = 1.0;
qx = newq[0];
qz = newq[1];
// determine in which quadrant we are
if (qx > 0.0 && qz > 0.0) {
CX = joint[0].max;
CZ = joint[1].max;
} else if (qx <= 0.0 && qz > 0.0) {
CX = -joint[0].min;
CZ = joint[1].max;
qx = -qx;
sx = -1.0;
} else if (qx <= 0.0 && qz <= 0.0) {
CX = -joint[0].min;
CZ = -joint[1].min;
qx = -qx;
qz = -qz;
sx = sz = -1.0;
} else {
CX = joint[0].max;
CZ = -joint[0].min;
qz = -qz;
sz = -1.0;
}
if (CX < KDL::epsilon || CZ < KDL::epsilon) {
// quadrant is degenerated
if (qx > CX) {
newq[0] = CX*sx;
joint[0].locked = true;
}
if (qz > CZ) {
newq[1] = CZ*sz;
joint[0].locked = true;
}
} else {
// general case
qx /= CX;
qz /= CZ;
norm = KDL::sqrt(KDL::sqr(qx)+KDL::sqr(qz));
if (norm > 1.0) {
norm = 1.0/norm;
newq[0] = qx*norm*CX*sx;
newq[1] = qz*norm*CZ*sz;
joint[0].locked = true;
}
}
} else {
// limit on X only
qx = newq[0];
if (qx > joint[0].max) {
newq[0] = joint[0].max;
joint[0].locked = true;
} else if (qx < joint[0].min) {
newq[0] = joint[0].min;
joint[0].locked = true;
}
}
} else if (joint[1].useLimit) {
// limit on Z only
qz = newq[1];
if (qz > joint[1].max) {
newq[1] = joint[1].max;
joint[0].locked = true;
} else if (qz < joint[1].min) {
newq[1] = joint[1].min;
joint[0].locked = true;
}
}
if (joint[0].locked) {
// check the difference from previous position
locked = true;
norm = KDL::sqr(newq[0]-q[0])+KDL::sqr(newq[1]-q[1]);
if (norm < KDL::epsilon2) {
// joint didn't move, no need to update the jacobian
callback.lockJoint(q_nr, 2);
} else {
// joint moved, compute the corresponding velocity
double deltaq[2];
(base.Inverse()*KDL::Rot(KDL::Vector(newq[0],0.0,newq[1]))).GetXZRot().GetValue(deltaq);
deltaq[0] /= timestamp.realTimestep;
deltaq[1] /= timestamp.realTimestep;
callback.lockJoint(q_nr, 2, deltaq);
// no need to update the other joints, it will be done after next rerun
goto end_loop;
}
} else
unlocked++;
break;
}
case KDL::Joint::Sphere:
{
(KDL::Rot(KDL::Vector(q))*KDL::Rot(KDL::Vector(qdot)*timestamp.realTimestep)).GetRot().GetValue(newq);
// no limit on this joint
unlocked++;
break;
}
default:
for (unsigned int i=0; i<joint->ndof; i++) {
newq[i] = q[i]+qdot[i]*timestamp.realTimestep;
if (joint[i].useLimit) {
if (newq[i] > joint[i].max) {
newq[i] = joint[i].max;
joint[0].locked = true;
} else if (newq[i] < joint[i].min) {
newq[i] = joint[i].min;
joint[0].locked = true;
}
}
}
if (joint[0].locked) {
locked = true;
norm = 0.0;
// compute delta to locked position
for (unsigned int i=0; i<joint->ndof; i++) {
qdot[i] = newq[i] - q[i];
norm += qdot[i]*qdot[i];
}
if (norm < KDL::epsilon2) {
// joint didn't move, no need to update the jacobian
callback.lockJoint(q_nr, joint->ndof);
} else {
// solver needs velocity, compute equivalent velocity
for (unsigned int i=0; i<joint->ndof; i++) {
qdot[i] /= timestamp.realTimestep;
}
callback.lockJoint(q_nr, joint->ndof, qdot);
goto end_loop;
}
} else
unlocked++;
}
}
qdot += joint->ndof;
q += joint->ndof;
newq += joint->ndof;
q_nr += joint->ndof;
}
end_loop:
// check if there any other unlocked joint
for ( ; q_nr<m_nq; ) {
Joint_struct* joint = &m_joints[q_nr];
if (!joint->locked)
unlocked++;
q_nr += joint->ndof;
}
// if all joints have been locked no need to run the solver again
return (unlocked) ? locked : false;
}
void Armature::updateKinematics(const Timestamp& timestamp){
//Integrate m_qdot
if (!m_finalized)
return;
// the new joint value have been computed already, just copy
memcpy(m_qKdl(0), m_newqKdl(0), sizeof(double)*m_qKdl.rows());
pushCache(timestamp);
updateJacobian();
// here update the desired output.
// We assume constant desired output for the joint limit constraint, no need to update it.
}
void Armature::updateJacobian()
{
//calculate pose and jacobian
for (unsigned int ee=0; ee<m_nee; ee++) {
m_fksolver->JntToCart(m_qKdl,m_effectors[ee].pose,m_effectors[ee].name,m_root);
m_jacsolver->JntToJac(m_qKdl,*m_jac,m_effectors[ee].name);
// get the jacobian for the base point, to prepare transformation to world reference
changeRefPoint(*m_jac,-m_effectors[ee].pose.p,*m_jac);
//copy to Jq:
e_matrix& Jq = m_JqArray[ee];
for(unsigned int i=0;i<6;i++) {
for(unsigned int j=0;j<m_nq;j++)
Jq(i,j)=(*m_jac)(i,j);
}
}
// remember that this object has moved
m_updated = true;
}
const Frame& Armature::getPose(const unsigned int ee)
{
if (!m_finalized)
return F_identity;
return (ee >= m_nee) ? F_identity : m_effectors[ee].pose;
}
bool Armature::getRelativeFrame(Frame& result, const std::string& segment_name, const std::string& base_name)
{
if (!m_finalized)
return false;
return (m_fksolver->JntToCart(m_qKdl,result,segment_name,base_name) < 0) ? false : true;
}
void Armature::updateControlOutput(const Timestamp& timestamp)
{
if (!m_finalized)
return;
if (!timestamp.substep && !timestamp.reiterate && timestamp.interpolate) {
popQ(timestamp.cacheTimestamp);
//popConstraints(timestamp.cacheTimestamp);
}
if (!timestamp.substep) {
// save previous joint state for getMaxJointChange()
memcpy(m_oldqKdl(0), m_qKdl(0), sizeof(double)*m_qKdl.rows());
for (unsigned int i=0; i<m_neffector; i++) {
m_effectors[i].oldpose = m_effectors[i].pose;
}
}
// remove all joint lock
for (JointList::iterator jit=m_joints.begin(); jit!=m_joints.end(); ++jit) {
(*jit).locked = false;
}
JointConstraintList::iterator it;
unsigned int iConstraint;
// scan through the constraints and call the callback functions
for (iConstraint=0, it=m_constraints.begin(); it!=m_constraints.end(); it++, iConstraint++) {
JointConstraint_struct* pConstraint = *it;
unsigned int nr, i;
for (i=0, nr = pConstraint->segment->second.q_nr; i<pConstraint->v_nr; i++, nr++) {
*(double *)&pConstraint->value[i].y = m_qKdl[nr];
*(double *)&pConstraint->value[i].ydot = m_qdotKdl[nr];
}
if (pConstraint->function && (pConstraint->substep || (!timestamp.reiterate && !timestamp.substep))) {
(*pConstraint->function)(timestamp, pConstraint->values, pConstraint->v_nr, pConstraint->param);
}
// recompute the weight in any case, that's the most likely modification
for (i=0, nr=pConstraint->y_nr; i<pConstraint->v_nr; i++, nr++) {
m_Wy(nr) = pConstraint->values[i].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
m_ydot(nr)=pConstraint->value[i].yddot+pConstraint->values[i].feedback*(pConstraint->value[i].yd-pConstraint->value[i].y);
}
}
}
bool Armature::setControlParameter(unsigned int constraintId, unsigned int valueId, ConstraintAction action, double value, double timestep)
{
unsigned int lastid, i;
if (constraintId == CONSTRAINT_ID_ALL) {
constraintId = 0;
lastid = m_nconstraint;
} else if (constraintId < m_nconstraint) {
lastid = constraintId+1;
} else {
return false;
}
for ( ; constraintId<lastid; ++constraintId) {
JointConstraint_struct* pConstraint = m_constraints[constraintId];
if (valueId == ID_JOINT) {
for (i=0; i<pConstraint->v_nr; i++) {
switch (action) {
case ACT_TOLERANCE:
pConstraint->values[i].tolerance = value;
break;
case ACT_FEEDBACK:
pConstraint->values[i].feedback = value;
break;
case ACT_ALPHA:
pConstraint->values[i].alpha = value;
break;
default:
break;
}
}
} else {
for (i=0; i<pConstraint->v_nr; i++) {
if (valueId == pConstraint->value[i].id) {
switch (action) {
case ACT_VALUE:
pConstraint->value[i].yd = value;
break;
case ACT_VELOCITY:
pConstraint->value[i].yddot = value;
break;
case ACT_TOLERANCE:
pConstraint->values[i].tolerance = value;
break;
case ACT_FEEDBACK:
pConstraint->values[i].feedback = value;
break;
case ACT_ALPHA:
pConstraint->values[i].alpha = value;
break;
case ACT_NONE:
break;
}
}
}
}
if (m_finalized) {
for (i=0; i<pConstraint->v_nr; i++)
m_Wy(pConstraint->y_nr+i) = pConstraint->values[i].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
}
}
return true;
}
}
|