1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* SPDX-FileCopyrightText: 2012-2013 Lukas Hosek and Alexander Wilkie. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause */
/* ============================================================================
This file is part of a sample implementation of the analytical skylight and
solar radiance models presented in the SIGGRAPH 2012 paper
"An Analytic Model for Full Spectral Sky-Dome Radiance"
and the 2013 IEEE CG&A paper
"Adding a Solar Radiance Function to the Hosek Skylight Model"
both by
Lukas Hosek and Alexander Wilkie
Charles University in Prague, Czech Republic
Version: 1.4a, February 22nd, 2013
Version history:
1.4a February 22nd, 2013
Removed unnecessary and counter-intuitive solar radius parameters
from the interface of the color-space sky dome initialization functions.
1.4 February 11th, 2013
Fixed a bug which caused the relative brightness of the solar disc
and the sky dome to be off by a factor of about 6. The sun was too
bright: this affected both normal and alien sun scenarios. The
coefficients of the solar radiance function were changed to fix this.
1.3 January 21st, 2013 (not released to the public)
Added support for solar discs that are not exactly the same size as
the terrestrial sun. Also added support for suns with a different
emission spectrum ("Alien World" functionality).
1.2a December 18th, 2012
Fixed a mistake and some inaccuracies in the solar radiance function
explanations found in ArHosekSkyModel.h. The actual source code is
unchanged compared to version 1.2.
1.2 December 17th, 2012
Native RGB data and a solar radiance function that matches the turbidity
conditions were added.
1.1 September 2012
The coefficients of the spectral model are now scaled so that the output
is given in physical units: W / (m^-2 * sr * nm). Also, the output of the
XYZ model is now no longer scaled to the range [0...1]. Instead, it is
the result of a simple conversion from spectral data via the CIE 2 degree
standard observer matching functions. Therefore, after multiplication
with 683 lm / W, the Y channel now corresponds to luminance in lm.
1.0 May 11th, 2012
Initial release.
Please visit http://cgg.mff.cuni.cz/projects/SkylightModelling/ to check if
an updated version of this code has been published!
============================================================================ */
/*
All instructions on how to use this code are in the accompanying header file.
*/
/** \file
* \ingroup intern_sky_modal
*/
#include "sky_model.h"
#include "sky_model_data.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
// Some macro definitions that occur elsewhere in ART, and that have to be
// replicated to make this a stand-alone module.
#ifndef MATH_PI
# define MATH_PI 3.141592653589793
#endif
#ifndef MATH_DEG_TO_RAD
# define MATH_DEG_TO_RAD (MATH_PI / 180.0)
#endif
#ifndef DEGREES
# define DEGREES *MATH_DEG_TO_RAD
#endif
#ifndef TERRESTRIAL_SOLAR_RADIUS
# define TERRESTRIAL_SOLAR_RADIUS ((0.51 DEGREES) / 2.0)
#endif
#ifndef ALLOC
# define ALLOC(_struct) ((_struct *)malloc(sizeof(_struct)))
#endif
/* Not defined on all platforms (macOS & WIN32). */
typedef unsigned int uint;
// internal definitions
typedef const double *ArHosekSkyModel_Dataset;
typedef const double *ArHosekSkyModel_Radiance_Dataset;
// internal functions
static void ArHosekSkyModel_CookConfiguration(ArHosekSkyModel_Dataset dataset,
SKY_ArHosekSkyModelConfiguration config,
double turbidity,
double albedo,
double solar_elevation)
{
const double *elev_matrix;
int int_turbidity = int(turbidity);
double turbidity_rem = turbidity - double(int_turbidity);
solar_elevation = pow(solar_elevation / (MATH_PI / 2.0), (1.0 / 3.0));
// alb 0 low turb
elev_matrix = dataset + (9 * 6 * (int_turbidity - 1));
for (uint i = 0; i < 9; ++i) {
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
config[i] =
(1.0 - albedo) * (1.0 - turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[i] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[i + 9] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[i + 18] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[i + 27] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[i + 36] +
pow(solar_elevation, 5.0) * elev_matrix[i + 45]);
}
// alb 1 low turb
elev_matrix = dataset + (9 * 6 * 10 + 9 * 6 * (int_turbidity - 1));
for (uint i = 0; i < 9; ++i) {
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
config[i] +=
(albedo) * (1.0 - turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[i] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[i + 9] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[i + 18] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[i + 27] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[i + 36] +
pow(solar_elevation, 5.0) * elev_matrix[i + 45]);
}
if (int_turbidity == 10) {
return;
}
// alb 0 high turb
elev_matrix = dataset + (9 * 6 * (int_turbidity));
for (uint i = 0; i < 9; ++i) {
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
config[i] +=
(1.0 - albedo) * (turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[i] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[i + 9] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[i + 18] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[i + 27] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[i + 36] +
pow(solar_elevation, 5.0) * elev_matrix[i + 45]);
}
// alb 1 high turb
elev_matrix = dataset + (9 * 6 * 10 + 9 * 6 * (int_turbidity));
for (uint i = 0; i < 9; ++i) {
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
config[i] +=
(albedo) * (turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[i] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[i + 9] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[i + 18] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[i + 27] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[i + 36] +
pow(solar_elevation, 5.0) * elev_matrix[i + 45]);
}
}
static double ArHosekSkyModel_CookRadianceConfiguration(ArHosekSkyModel_Radiance_Dataset dataset,
double turbidity,
double albedo,
double solar_elevation)
{
const double *elev_matrix;
int int_turbidity = int(turbidity);
double turbidity_rem = turbidity - double(int_turbidity);
double res;
solar_elevation = pow(solar_elevation / (MATH_PI / 2.0), (1.0 / 3.0));
// alb 0 low turb
elev_matrix = dataset + (6 * (int_turbidity - 1));
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
res = (1.0 - albedo) * (1.0 - turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[0] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[1] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[2] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[3] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[4] +
pow(solar_elevation, 5.0) * elev_matrix[5]);
// alb 1 low turb
elev_matrix = dataset + (6 * 10 + 6 * (int_turbidity - 1));
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
res += (albedo) * (1.0 - turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[0] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[1] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[2] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[3] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[4] +
pow(solar_elevation, 5.0) * elev_matrix[5]);
if (int_turbidity == 10) {
return res;
}
// alb 0 high turb
elev_matrix = dataset + (6 * (int_turbidity));
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
res += (1.0 - albedo) * (turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[0] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[1] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[2] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[3] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[4] +
pow(solar_elevation, 5.0) * elev_matrix[5]);
// alb 1 high turb
elev_matrix = dataset + (6 * 10 + 6 * (int_turbidity));
//(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
res += (albedo) * (turbidity_rem) *
(pow(1.0 - solar_elevation, 5.0) * elev_matrix[0] +
5.0 * pow(1.0 - solar_elevation, 4.0) * solar_elevation * elev_matrix[1] +
10.0 * pow(1.0 - solar_elevation, 3.0) * pow(solar_elevation, 2.0) * elev_matrix[2] +
10.0 * pow(1.0 - solar_elevation, 2.0) * pow(solar_elevation, 3.0) * elev_matrix[3] +
5.0 * (1.0 - solar_elevation) * pow(solar_elevation, 4.0) * elev_matrix[4] +
pow(solar_elevation, 5.0) * elev_matrix[5]);
return res;
}
static double ArHosekSkyModel_GetRadianceInternal(
const SKY_ArHosekSkyModelConfiguration configuration, const double theta, const double gamma)
{
const double expM = exp(configuration[4] * gamma);
const double rayM = cos(gamma) * cos(gamma);
const double mieM =
(1.0 + cos(gamma) * cos(gamma)) /
pow((1.0 + configuration[8] * configuration[8] - 2.0 * configuration[8] * cos(gamma)), 1.5);
const double zenith = sqrt(cos(theta));
return (1.0 + configuration[0] * exp(configuration[1] / (cos(theta) + 0.01))) *
(configuration[2] + configuration[3] * expM + configuration[5] * rayM +
configuration[6] * mieM + configuration[7] * zenith);
}
void SKY_arhosekskymodelstate_free(SKY_ArHosekSkyModelState *state)
{
free(state);
}
double SKY_arhosekskymodel_radiance(SKY_ArHosekSkyModelState *state,
double theta,
double gamma,
double wavelength)
{
int low_wl = int((wavelength - 320.0) / 40.0);
if (low_wl < 0 || low_wl >= 11) {
return 0.0;
}
double interp = fmod((wavelength - 320.0) / 40.0, 1.0);
double val_low = ArHosekSkyModel_GetRadianceInternal(state->configs[low_wl], theta, gamma) *
state->radiances[low_wl] * state->emission_correction_factor_sky[low_wl];
if (interp < 1e-6) {
return val_low;
}
double result = (1.0 - interp) * val_low;
if (low_wl + 1 < 11) {
result += interp *
ArHosekSkyModel_GetRadianceInternal(state->configs[low_wl + 1], theta, gamma) *
state->radiances[low_wl + 1] * state->emission_correction_factor_sky[low_wl + 1];
}
return result;
}
// xyz and rgb versions
SKY_ArHosekSkyModelState *SKY_arhosek_xyz_skymodelstate_alloc_init(const double turbidity,
const double albedo,
const double elevation)
{
SKY_ArHosekSkyModelState *state = ALLOC(SKY_ArHosekSkyModelState);
state->solar_radius = TERRESTRIAL_SOLAR_RADIUS;
state->turbidity = turbidity;
state->albedo = albedo;
state->elevation = elevation;
for (uint channel = 0; channel < 3; ++channel) {
ArHosekSkyModel_CookConfiguration(
datasetsXYZ[channel], state->configs[channel], turbidity, albedo, elevation);
state->radiances[channel] = ArHosekSkyModel_CookRadianceConfiguration(
datasetsXYZRad[channel], turbidity, albedo, elevation);
}
return state;
}
|