1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
|
# SPDX-FileCopyrightText: 2009-2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
# Authors : Tamito Kajiyama
# Date : 26/07/2010
# Purpose : Interactive manipulation of stylization parameters
from freestyle.types import (
BinaryPredicate1D,
IntegrationType,
Interface0DIterator,
Nature,
Noise,
Operators,
StrokeAttribute,
UnaryPredicate0D,
UnaryPredicate1D,
TVertex,
Material,
ViewEdge,
)
from freestyle.chainingiterators import (
ChainPredicateIterator,
ChainSilhouetteIterator,
pySketchyChainSilhouetteIterator,
pySketchyChainingIterator,
)
from freestyle.functions import (
Curvature2DAngleF0D,
Normal2DF0D,
QuantitativeInvisibilityF1D,
VertexOrientation2DF0D,
CurveMaterialF0D,
)
from freestyle.predicates import (
AndUP1D,
ContourUP1D,
ExternalContourUP1D,
FalseBP1D,
FalseUP1D,
Length2DBP1D,
NotBP1D,
NotUP1D,
OrUP1D,
QuantitativeInvisibilityUP1D,
TrueBP1D,
TrueUP1D,
WithinImageBoundaryUP1D,
pyNFirstUP1D,
pyNatureUP1D,
pyProjectedXBP1D,
pyProjectedYBP1D,
pyZBP1D,
)
from freestyle.shaders import (
BackboneStretcherShader,
BezierCurveShader,
BlenderTextureShader,
ConstantColorShader,
GuidingLinesShader,
PolygonalizationShader,
pyBluePrintCirclesShader,
pyBluePrintEllipsesShader,
pyBluePrintSquaresShader,
RoundCapShader,
SamplingShader,
SpatialNoiseShader,
SquareCapShader,
StrokeShader,
StrokeTextureStepShader,
ThicknessNoiseShader as thickness_noise,
TipRemoverShader,
)
from freestyle.utils import (
angle_x_normal,
bound,
BoundedProperty,
ContextFunctions,
curvature_from_stroke_vertex,
getCurrentScene,
iter_distance_along_stroke,
iter_distance_from_camera,
iter_distance_from_object,
iter_material_value,
iter_t2d_along_stroke,
normal_at_I0D,
pairwise,
simplify,
stroke_normal,
)
from _freestyle import (
blendRamp,
evaluateColorRamp,
evaluateCurveMappingF,
)
import time
import bpy
from mathutils import Vector
from math import pi, sin, cos, acos, radians
from itertools import cycle
# WARNING: highly experimental, not a stable API
# lists of callback functions
# used by the render_freestyle_svg addon
callbacks_lineset_pre = []
callbacks_modifiers_post = []
callbacks_lineset_post = []
class ColorRampModifier(StrokeShader):
"""Primitive for the color modifiers."""
def __init__(self, blend, influence, ramp):
StrokeShader.__init__(self)
self.blend = blend
self.influence = influence
self.ramp = ramp
def evaluate(self, t):
col = evaluateColorRamp(self.ramp, t)
return col.xyz # omit alpha
def blend_ramp(self, a, b):
return blendRamp(self.blend, a, self.influence, b)
class ScalarBlendModifier(StrokeShader):
"""Primitive for alpha and thickness modifiers."""
def __init__(self, blend_type, influence):
StrokeShader.__init__(self)
self.blend_type = blend_type
self.influence = influence
def blend(self, v1, v2):
fac = self.influence
facm = 1.0 - fac
if self.blend_type == 'MIX':
v1 = facm * v1 + fac * v2
elif self.blend_type == 'ADD':
v1 += fac * v2
elif self.blend_type == 'MULTIPLY':
v1 *= facm + fac * v2
elif self.blend_type == 'SUBTRACT':
v1 -= fac * v2
elif self.blend_type == 'DIVIDE':
v1 = facm * v1 + fac * v1 / v2 if v2 != 0.0 else v1
elif self.blend_type == 'DIFFERENCE':
v1 = facm * v1 + fac * abs(v1 - v2)
elif self.blend_type == 'MINIMUM':
v1 = min(fac * v2, v1)
elif self.blend_type == 'MAXIMUM':
v1 = max(fac * v2, v1)
else:
raise ValueError("unknown curve blend type: " + self.blend_type)
return v1
class CurveMappingModifier(ScalarBlendModifier):
def __init__(self, blend, influence, mapping, invert, curve):
ScalarBlendModifier.__init__(self, blend, influence)
assert mapping in {'LINEAR', 'CURVE'}
self.evaluate = getattr(self, mapping)
self.invert = invert
self.curve = curve
def LINEAR(self, t):
return (1.0 - t) if self.invert else t
def CURVE(self, t):
# deprecated: return evaluateCurveMappingF(self.curve, 0, t)
curve = self.curve
curve.initialize()
result = curve.evaluate(curve=curve.curves[0], position=t)
# float precision errors in t can give a very weird result for evaluate.
# therefore, bound the result by the curve's min and max values
return bound(curve.clip_min_y, result, curve.clip_max_y)
class ThicknessModifierMixIn:
def __init__(self):
scene = getCurrentScene()
self.persp_camera = (scene.camera.data.type == 'PERSP')
def set_thickness(self, sv, outer, inner):
fe = sv.fedge
nature = fe.nature
if (nature & Nature.BORDER):
if self.persp_camera:
point = -sv.point_3d.normalized()
dir = point.dot(fe.normal_left)
else:
dir = fe.normal_left.z
if dir < 0.0: # the back side is visible
outer, inner = inner, outer
elif (nature & Nature.SILHOUETTE):
if fe.is_smooth: # TODO more tests needed
outer, inner = inner, outer
else:
outer = inner = (outer + inner) / 2
sv.attribute.thickness = (outer, inner)
class ThicknessBlenderMixIn(ThicknessModifierMixIn):
def __init__(self, position, ratio):
ThicknessModifierMixIn.__init__(self)
self.position = position
self.ratio = ratio
def blend_thickness(self, svert, thickness, asymmetric=False):
"""Blends and sets the thickness with respect to the position, blend mode and symmetry."""
if asymmetric:
right, left = thickness
self.blend_thickness_asymmetric(svert, right, left)
else:
if type(thickness) not in {int, float}:
thickness = sum(thickness)
self.blend_thickness_symmetric(svert, thickness)
def blend_thickness_symmetric(self, svert, v):
"""Blends and sets the thickness. Thickness is equal on each side of the backbone"""
outer, inner = svert.attribute.thickness
v = self.blend(outer + inner, v)
# Part 1: blend
if self.position == 'CENTER':
outer = inner = v * 0.5
elif self.position == 'INSIDE':
outer, inner = 0, v
elif self.position == 'OUTSIDE':
outer, inner = v, 0
elif self.position == 'RELATIVE':
outer, inner = v * self.ratio, v - (v * self.ratio)
else:
raise ValueError("unknown thickness position: " + position)
self.set_thickness(svert, outer, inner)
def blend_thickness_asymmetric(self, svert, right, left):
"""Blends and sets the thickness. Thickness may be unequal on each side of the backbone"""
# blend the thickness values for both sides. This way, the blend mode is supported.
old = svert.attribute.thickness
new = (right, left)
right, left = (self.blend(*val) for val in zip(old, new))
fe = svert.fedge
nature = fe.nature
if (nature & Nature.BORDER):
if self.persp_camera:
point = -svert.point_3d.normalized()
dir = point.dot(fe.normal_left)
else:
dir = fe.normal_left.z
if dir < 0.0: # the back side is visible
right, left = left, right
elif (nature & Nature.SILHOUETTE):
if fe.is_smooth: # TODO more tests needed
right, left = left, right
svert.attribute.thickness = (right, left)
class BaseThicknessShader(StrokeShader, ThicknessModifierMixIn):
def __init__(self, thickness, position, ratio):
StrokeShader.__init__(self)
ThicknessModifierMixIn.__init__(self)
if position == 'CENTER':
self.outer = thickness * 0.5
self.inner = thickness - self.outer
elif position == 'INSIDE':
self.outer = 0
self.inner = thickness
elif position == 'OUTSIDE':
self.outer = thickness
self.inner = 0
elif position == 'RELATIVE':
self.outer = thickness * ratio
self.inner = thickness - self.outer
else:
raise ValueError("unknown thickness position: " + position)
def shade(self, stroke):
for svert in stroke:
self.set_thickness(svert, self.outer, self.inner)
# Along Stroke modifiers
class ColorAlongStrokeShader(ColorRampModifier):
"""Maps a ramp to the color of the stroke, using the curvilinear abscissa (t)."""
def shade(self, stroke):
for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
a = svert.attribute.color
b = self.evaluate(t)
svert.attribute.color = self.blend_ramp(a, b)
class AlphaAlongStrokeShader(CurveMappingModifier):
"""Maps a curve to the alpha/transparency of the stroke, using the curvilinear abscissa (t)."""
def shade(self, stroke):
for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
a = svert.attribute.alpha
b = self.evaluate(t)
svert.attribute.alpha = self.blend(a, b)
class ThicknessAlongStrokeShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Maps a curve to the thickness of the stroke, using the curvilinear abscissa (t)."""
def __init__(self, thickness_position, thickness_ratio,
blend, influence, mapping, invert, curve, value_min, value_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.value = BoundedProperty(value_min, value_max)
def shade(self, stroke):
for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
b = self.value.min + self.evaluate(t) * self.value.delta
self.blend_thickness(svert, b)
# -- Distance from Camera modifiers -- #
class ColorDistanceFromCameraShader(ColorRampModifier):
"""Picks a color value from a ramp based on the vertex' distance from the camera."""
def __init__(self, blend, influence, ramp, range_min, range_max):
ColorRampModifier.__init__(self, blend, influence, ramp)
self.range = BoundedProperty(range_min, range_max)
def shade(self, stroke):
it = iter_distance_from_camera(stroke, *self.range)
for svert, t in it:
a = svert.attribute.color
b = self.evaluate(t)
svert.attribute.color = self.blend_ramp(a, b)
class AlphaDistanceFromCameraShader(CurveMappingModifier):
"""Picks an alpha value from a curve based on the vertex' distance from the camera"""
def __init__(self, blend, influence, mapping, invert, curve, range_min, range_max):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.range = BoundedProperty(range_min, range_max)
def shade(self, stroke):
it = iter_distance_from_camera(stroke, *self.range)
for svert, t in it:
a = svert.attribute.alpha
b = self.evaluate(t)
svert.attribute.alpha = self.blend(a, b)
class ThicknessDistanceFromCameraShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Picks a thickness value from a curve based on the vertex' distance from the camera."""
def __init__(self, thickness_position, thickness_ratio,
blend, influence, mapping, invert, curve, range_min, range_max, value_min, value_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.range = BoundedProperty(range_min, range_max)
self.value = BoundedProperty(value_min, value_max)
def shade(self, stroke):
for (svert, t) in iter_distance_from_camera(stroke, *self.range):
b = self.value.min + self.evaluate(t) * self.value.delta
self.blend_thickness(svert, b)
# Distance from Object modifiers
class ColorDistanceFromObjectShader(ColorRampModifier):
"""Picks a color value from a ramp based on the vertex' distance from a given object."""
def __init__(self, blend, influence, ramp, target, range_min, range_max):
ColorRampModifier.__init__(self, blend, influence, ramp)
if target is None:
raise ValueError("ColorDistanceFromObjectShader: target can't be None ")
self.range = BoundedProperty(range_min, range_max)
# construct a model-view matrix
matrix = getCurrentScene().camera.matrix_world.inverted()
# get the object location in the camera coordinate
self.loc = matrix @ target.location
def shade(self, stroke):
it = iter_distance_from_object(stroke, self.loc, *self.range)
for svert, t in it:
a = svert.attribute.color
b = self.evaluate(t)
svert.attribute.color = self.blend_ramp(a, b)
class AlphaDistanceFromObjectShader(CurveMappingModifier):
"""Picks an alpha value from a curve based on the vertex' distance from a given object."""
def __init__(self, blend, influence, mapping, invert, curve, target, range_min, range_max):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
if target is None:
raise ValueError("AlphaDistanceFromObjectShader: target can't be None ")
self.range = BoundedProperty(range_min, range_max)
# construct a model-view matrix
matrix = getCurrentScene().camera.matrix_world.inverted()
# get the object location in the camera coordinate
self.loc = matrix @ target.location
def shade(self, stroke):
it = iter_distance_from_object(stroke, self.loc, *self.range)
for svert, t in it:
a = svert.attribute.alpha
b = self.evaluate(t)
svert.attribute.alpha = self.blend(a, b)
class ThicknessDistanceFromObjectShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Picks a thickness value from a curve based on the vertex' distance from a given object."""
def __init__(self, thickness_position, thickness_ratio,
blend, influence, mapping, invert, curve, target, range_min, range_max, value_min, value_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
if target is None:
raise ValueError("ThicknessDistanceFromObjectShader: target can't be None ")
self.range = BoundedProperty(range_min, range_max)
self.value = BoundedProperty(value_min, value_max)
# construct a model-view matrix
matrix = getCurrentScene().camera.matrix_world.inverted()
# get the object location in the camera coordinate
self.loc = matrix @ target.location
def shade(self, stroke):
it = iter_distance_from_object(stroke, self.loc, *self.range)
for svert, t in it:
b = self.value.min + self.evaluate(t) * self.value.delta
self.blend_thickness(svert, b)
# Material modifiers
class ColorMaterialShader(ColorRampModifier):
"""Assigns a color to the vertices based on their underlying material."""
def __init__(self, blend, influence, ramp, material_attribute, use_ramp):
ColorRampModifier.__init__(self, blend, influence, ramp)
self.attribute = material_attribute
self.use_ramp = use_ramp
self.func = CurveMaterialF0D()
def shade(self, stroke, attributes={'DIFF', 'SPEC', 'LINE'}):
it = Interface0DIterator(stroke)
if not self.use_ramp and self.attribute in attributes:
for svert in it:
material = self.func(it)
if self.attribute == 'LINE':
b = material.line[0:3]
elif self.attribute == 'DIFF':
b = material.diffuse[0:3]
else:
b = material.specular[0:3]
a = svert.attribute.color
svert.attribute.color = self.blend_ramp(a, b)
else:
for svert, value in iter_material_value(stroke, self.func, self.attribute):
a = svert.attribute.color
b = self.evaluate(value)
svert.attribute.color = self.blend_ramp(a, b)
class AlphaMaterialShader(CurveMappingModifier):
"""Assigns an alpha value to the vertices based on their underlying material."""
def __init__(self, blend, influence, mapping, invert, curve, material_attribute):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.attribute = material_attribute
self.func = CurveMaterialF0D()
def shade(self, stroke):
for svert, value in iter_material_value(stroke, self.func, self.attribute):
a = svert.attribute.alpha
b = self.evaluate(value)
svert.attribute.alpha = self.blend(a, b)
class ThicknessMaterialShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Assigns a thickness value to the vertices based on their underlying material."""
def __init__(self, thickness_position, thickness_ratio,
blend, influence, mapping, invert, curve, material_attribute, value_min, value_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.attribute = material_attribute
self.value = BoundedProperty(value_min, value_max)
self.func = CurveMaterialF0D()
def shade(self, stroke):
for svert, value in iter_material_value(stroke, self.func, self.attribute):
b = self.value.min + self.evaluate(value) * self.value.delta
self.blend_thickness(svert, b)
# Calligraphic thickness modifier
class CalligraphicThicknessShader(ThicknessBlenderMixIn, ScalarBlendModifier):
"""Thickness modifier for achieving a calligraphy-like effect."""
def __init__(self, thickness_position, thickness_ratio,
blend_type, influence, orientation, thickness_min, thickness_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
ScalarBlendModifier.__init__(self, blend_type, influence)
self.orientation = Vector((cos(orientation), sin(orientation)))
self.thickness = BoundedProperty(thickness_min, thickness_max)
self.func = VertexOrientation2DF0D()
def shade(self, stroke):
it = Interface0DIterator(stroke)
for svert in it:
dir = self.func(it)
if dir.length != 0.0:
dir.normalize()
fac = abs(dir.orthogonal() @ self.orientation)
b = self.thickness.min + fac * self.thickness.delta
else:
b = self.thickness.min
self.blend_thickness(svert, b)
# - Tangent Modifiers - #
class TangentColorShader(ColorRampModifier):
"""Color based on the direction of the stroke"""
def shade(self, stroke):
it = Interface0DIterator(stroke)
for svert in it:
angle = angle_x_normal(it)
fac = self.evaluate(angle / pi)
a = svert.attribute.color
svert.attribute.color = self.blend_ramp(a, fac)
class TangentAlphaShader(CurveMappingModifier):
"""Alpha transparency based on the direction of the stroke"""
def shade(self, stroke):
it = Interface0DIterator(stroke)
for svert in it:
angle = angle_x_normal(it)
fac = self.evaluate(angle / pi)
a = svert.attribute.alpha
svert.attribute.alpha = self.blend(a, fac)
class TangentThicknessShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Thickness based on the direction of the stroke"""
def __init__(self, thickness_position, thickness_ratio, blend, influence, mapping, invert, curve,
thickness_min, thickness_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.thickness = BoundedProperty(thickness_min, thickness_max)
def shade(self, stroke):
it = Interface0DIterator(stroke)
for svert in it:
angle = angle_x_normal(it)
thickness = self.thickness.min + self.evaluate(angle / pi) * self.thickness.delta
self.blend_thickness(svert, thickness)
# - Noise Modifiers - #
class NoiseShader:
"""Base class for noise shaders"""
def __init__(self, amplitude, period, seed=512):
self.amplitude = amplitude
self.scale = 1 / period / seed
self.seed = seed
def noisegen(self, stroke, n1=Noise(), n2=Noise()):
"""Produces two noise values per StrokeVertex for every vertex in the stroke"""
initU1 = stroke.length_2d * self.seed + n1.rand(512) * self.seed
initU2 = stroke.length_2d * self.seed + n2.rand() * self.seed
for svert in stroke:
a = n1.turbulence_smooth(self.scale * svert.curvilinear_abscissa + initU1, 2)
b = n2.turbulence_smooth(self.scale * svert.curvilinear_abscissa + initU2, 2)
yield (svert, a, b)
class ThicknessNoiseShader(ThicknessBlenderMixIn, ScalarBlendModifier, NoiseShader):
"""Thickness based on pseudo-noise"""
def __init__(self, thickness_position, thickness_ratio, blend_type,
influence, amplitude, period, seed=512, asymmetric=True):
ScalarBlendModifier.__init__(self, blend_type, influence)
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
NoiseShader.__init__(self, amplitude, period, seed)
self.asymmetric = asymmetric
def shade(self, stroke):
for svert, noiseval1, noiseval2 in self.noisegen(stroke):
(r, l) = svert.attribute.thickness
l += noiseval1 * self.amplitude
r += noiseval2 * self.amplitude
self.blend_thickness(svert, (r, l), self.asymmetric)
class ColorNoiseShader(ColorRampModifier, NoiseShader):
"""Color based on pseudo-noise"""
def __init__(self, blend, influence, ramp, amplitude, period, seed=512):
ColorRampModifier.__init__(self, blend, influence, ramp)
NoiseShader.__init__(self, amplitude, period, seed)
def shade(self, stroke):
for svert, noiseval1, noiseval2 in self.noisegen(stroke):
position = abs(noiseval1 + noiseval2)
svert.attribute.color = self.blend_ramp(svert.attribute.color, self.evaluate(position))
class AlphaNoiseShader(CurveMappingModifier, NoiseShader):
"""Alpha transparency on based pseudo-noise"""
def __init__(self, blend, influence, mapping, invert, curve, amplitude, period, seed=512):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
NoiseShader.__init__(self, amplitude, period, seed)
def shade(self, stroke, n1=Noise(), n2=Noise()):
for svert, noiseval1, noiseval2 in self.noisegen(stroke):
position = abs(noiseval1 + noiseval2)
svert.attribute.alpha = self.blend(svert.attribute.alpha, self.evaluate(position))
# - Crease Angle Modifiers - #
def crease_angle(svert):
"""Returns the crease angle between the StrokeVertex' two adjacent faces (in radians)"""
fe = svert.fedge
if not fe or fe.is_smooth or not (fe.nature & Nature.CREASE):
return None
# make sure that the input is within the domain of the acos function
product = bound(-1.0, -fe.normal_left.dot(fe.normal_right), 1.0)
return acos(product)
class CreaseAngleColorShader(ColorRampModifier):
"""Color based on the crease angle between two adjacent faces on the underlying geometry"""
def __init__(self, blend, influence, ramp, angle_min, angle_max):
ColorRampModifier.__init__(self, blend, influence, ramp)
# angles are (already) in radians
self.angle = BoundedProperty(angle_min, angle_max)
def shade(self, stroke):
for svert in stroke:
angle = crease_angle(svert)
if angle is None:
continue
t = self.angle.interpolate(angle)
svert.attribute.color = self.blend_ramp(svert.attribute.color, self.evaluate(t))
class CreaseAngleAlphaShader(CurveMappingModifier):
"""Alpha transparency based on the crease angle between two adjacent faces on the underlying geometry"""
def __init__(self, blend, influence, mapping, invert, curve, angle_min, angle_max):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
# angles are (already) in radians
self.angle = BoundedProperty(angle_min, angle_max)
def shade(self, stroke):
for svert in stroke:
angle = crease_angle(svert)
if angle is None:
continue
t = self.angle.interpolate(angle)
svert.attribute.alpha = self.blend(svert.attribute.alpha, self.evaluate(t))
class CreaseAngleThicknessShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Thickness based on the crease angle between two adjacent faces on the underlying geometry"""
def __init__(self, thickness_position, thickness_ratio, blend, influence, mapping, invert, curve,
angle_min, angle_max, thickness_min, thickness_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
# angles are (already) in radians
self.angle = BoundedProperty(angle_min, angle_max)
self.thickness = BoundedProperty(thickness_min, thickness_max)
def shade(self, stroke):
for svert in stroke:
angle = crease_angle(svert)
if angle is None:
continue
t = self.angle.interpolate(angle)
thickness = self.thickness.min + self.evaluate(t) * self.thickness.delta
self.blend_thickness(svert, thickness)
# - Curvature3D Modifiers - #
def normalized_absolute_curvature(svert, bounded_curvature):
"""
Gives the absolute curvature in range [0, 1].
The actual curvature (Kr) value can be anywhere in the range [-inf, inf], where convex curvature
yields a positive value, and concave a negative one. These shaders only look for the magnitude
of the 3D curvature, hence the abs()
"""
curvature = curvature_from_stroke_vertex(svert)
if curvature is None:
return 0.0
return bounded_curvature.interpolate(abs(curvature))
class Curvature3DColorShader(ColorRampModifier):
"""Color based on the 3D curvature of the underlying geometry"""
def __init__(self, blend, influence, ramp, curvature_min, curvature_max):
ColorRampModifier.__init__(self, blend, influence, ramp)
self.curvature = BoundedProperty(curvature_min, curvature_max)
def shade(self, stroke):
for svert in stroke:
t = normalized_absolute_curvature(svert, self.curvature)
a = svert.attribute.color
b = self.evaluate(t)
svert.attribute.color = self.blend_ramp(a, b)
class Curvature3DAlphaShader(CurveMappingModifier):
"""Alpha based on the 3D curvature of the underlying geometry"""
def __init__(self, blend, influence, mapping, invert, curve, curvature_min, curvature_max):
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.curvature = BoundedProperty(curvature_min, curvature_max)
def shade(self, stroke):
for svert in stroke:
t = normalized_absolute_curvature(svert, self.curvature)
a = svert.attribute.alpha
b = self.evaluate(t)
svert.attribute.alpha = self.blend(a, b)
class Curvature3DThicknessShader(ThicknessBlenderMixIn, CurveMappingModifier):
"""Alpha based on the 3D curvature of the underlying geometry"""
def __init__(self, thickness_position, thickness_ratio, blend, influence, mapping, invert, curve,
curvature_min, curvature_max, thickness_min, thickness_max):
ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
self.curvature = BoundedProperty(curvature_min, curvature_max)
self.thickness = BoundedProperty(thickness_min, thickness_max)
def shade(self, stroke):
for svert in stroke:
t = normalized_absolute_curvature(svert, self.curvature)
thickness = self.thickness.min + self.evaluate(t) * self.thickness.delta
self.blend_thickness(svert, thickness)
# Geometry modifiers
class SimplificationShader(StrokeShader):
"""Simplifies a stroke by merging points together"""
def __init__(self, tolerance):
StrokeShader.__init__(self)
self.tolerance = tolerance
def shade(self, stroke):
points = tuple(svert.point for svert in stroke)
points_simplified = simplify(points, tolerance=self.tolerance)
it = iter(stroke)
for svert, point in zip(it, points_simplified):
svert.point = point
for svert in tuple(it):
stroke.remove_vertex(svert)
class SinusDisplacementShader(StrokeShader):
"""Displaces the stroke in a sine wave-like shape."""
def __init__(self, wavelength, amplitude, phase):
StrokeShader.__init__(self)
self.wavelength = wavelength
self.amplitude = amplitude
self.phase = phase / wavelength * 2 * pi
def shade(self, stroke):
# normals are stored in a tuple, so they don't update when we reposition vertices.
normals = tuple(stroke_normal(stroke))
distances = iter_distance_along_stroke(stroke)
coeff = 1 / self.wavelength * 2 * pi
for svert, distance, normal in zip(stroke, distances, normals):
n = normal * self.amplitude * cos(distance * coeff + self.phase)
svert.point += n
stroke.update_length()
class PerlinNoise1DShader(StrokeShader):
"""
Displaces the stroke using the curvilinear abscissa. This means
that lines with the same length and sampling interval will be
identically distorted.
"""
def __init__(self, freq=10, amp=10, oct=4, angle=radians(45), seed=-1):
StrokeShader.__init__(self)
self.noise = Noise(seed)
self.freq = freq
self.amp = amp
self.oct = oct
self.dir = Vector((cos(angle), sin(angle)))
def shade(self, stroke):
length = stroke.length_2d
for svert in stroke:
nres = self.noise.turbulence1(length * svert.u, self.freq, self.amp, self.oct)
svert.point += nres * self.dir
stroke.update_length()
class PerlinNoise2DShader(StrokeShader):
"""
Displaces the stroke using the strokes coordinates. This means
that in a scene no strokes will be distorted identically.
More information on the noise shaders can be found at:
https://freestyleintegration.wordpress.com/2011/09/25/development-updates-on-september-25/
"""
def __init__(self, freq=10, amp=10, oct=4, angle=radians(45), seed=-1):
StrokeShader.__init__(self)
self.noise = Noise(seed)
self.freq = freq
self.amp = amp
self.oct = oct
self.dir = Vector((cos(angle), sin(angle)))
def shade(self, stroke):
for svert in stroke:
projected = Vector((svert.projected_x, svert.projected_y))
nres = self.noise.turbulence2(projected, self.freq, self.amp, self.oct)
svert.point += nres * self.dir
stroke.update_length()
class Offset2DShader(StrokeShader):
"""Offsets the stroke by a given amount."""
def __init__(self, start, end, x, y):
StrokeShader.__init__(self)
self.start = start
self.end = end
self.xy = Vector((x, y))
def shade(self, stroke):
# normals are stored in a tuple, so they don't update when we reposition vertices.
normals = tuple(stroke_normal(stroke))
for svert, normal in zip(stroke, normals):
a = self.start + svert.u * (self.end - self.start)
svert.point += (normal * a) + self.xy
stroke.update_length()
class Transform2DShader(StrokeShader):
"""Transforms the stroke (scale, rotation, location) around a given pivot point """
def __init__(self, pivot, scale_x, scale_y, angle, pivot_u, pivot_x, pivot_y):
StrokeShader.__init__(self)
self.pivot = pivot
self.scale = Vector((scale_x, scale_y))
self.cos_theta = cos(angle)
self.sin_theta = sin(angle)
self.pivot_u = pivot_u
self.pivot_x = pivot_x
self.pivot_y = pivot_y
if pivot not in {'START', 'END', 'CENTER', 'ABSOLUTE', 'PARAM'}:
raise ValueError("expected pivot in {'START', 'END', 'CENTER', 'ABSOLUTE', 'PARAM'}, not" + pivot)
def shade(self, stroke):
# determine the pivot of scaling and rotation operations
if self.pivot == 'START':
pivot = stroke[0].point
elif self.pivot == 'END':
pivot = stroke[-1].point
elif self.pivot == 'CENTER':
# minor rounding errors here, because
# given v = Vector(a, b), then (v / n) != Vector(v.x / n, v.y / n)
pivot = (1 / len(stroke)) * sum((svert.point for svert in stroke), Vector((0.0, 0.0)))
elif self.pivot == 'ABSOLUTE':
pivot = Vector((self.pivot_x, self.pivot_y))
elif self.pivot == 'PARAM':
if self.pivot_u < stroke[0].u:
pivot = stroke[0].point
else:
for prev, svert in pairwise(stroke):
if self.pivot_u < svert.u:
break
pivot = svert.point + (svert.u - self.pivot_u) * (prev.point - svert.point)
# apply scaling and rotation operations
for svert in stroke:
p = (svert.point - pivot)
x = p.x * self.scale.x
y = p.y * self.scale.y
p.x = x * self.cos_theta - y * self.sin_theta
p.y = x * self.sin_theta + y * self.cos_theta
svert.point = p + pivot
stroke.update_length()
# Predicates and helper functions
class QuantitativeInvisibilityRangeUP1D(UnaryPredicate1D):
def __init__(self, qi_start, qi_end):
UnaryPredicate1D.__init__(self)
self.getQI = QuantitativeInvisibilityF1D()
self.qi_start = qi_start
self.qi_end = qi_end
def __call__(self, inter):
qi = self.getQI(inter)
return self.qi_start <= qi <= self.qi_end
def getQualifiedObjectName(ob):
if ob.library is not None:
return ob.library.filepath + '/' + ob.name
return ob.name
class ObjectNamesUP1D(UnaryPredicate1D):
def __init__(self, names, negative):
UnaryPredicate1D.__init__(self)
self.names = names
self.negative = negative
def getViewShapeName(self, vs):
if vs.library_path is not None and len(vs.library_path):
return vs.library_path + '/' + vs.name
return vs.name
def __call__(self, viewEdge):
found = self.getViewShapeName(viewEdge.viewshape) in self.names
if self.negative:
return not found
return found
# -- Split by dashed line pattern -- #
class SplitPatternStartingUP0D(UnaryPredicate0D):
def __init__(self, controller):
UnaryPredicate0D.__init__(self)
self.controller = controller
def __call__(self, inter):
return self.controller.start()
class SplitPatternStoppingUP0D(UnaryPredicate0D):
def __init__(self, controller):
UnaryPredicate0D.__init__(self)
self.controller = controller
def __call__(self, inter):
return self.controller.stop()
class SplitPatternController:
def __init__(self, pattern, sampling):
self.sampling = float(sampling)
k = len(pattern) // 2
n = k * 2
self.start_pos = [pattern[i] + pattern[i + 1] for i in range(0, n, 2)]
self.stop_pos = [pattern[i] for i in range(0, n, 2)]
self.init()
def init(self):
self.start_len = 0.0
self.start_idx = 0
self.stop_len = self.sampling
self.stop_idx = 0
def start(self):
self.start_len += self.sampling
if abs(self.start_len - self.start_pos[self.start_idx]) < self.sampling / 2.0:
self.start_len = 0.0
self.start_idx = (self.start_idx + 1) % len(self.start_pos)
return True
return False
def stop(self):
if self.start_len > 0.0:
self.init()
self.stop_len += self.sampling
if abs(self.stop_len - self.stop_pos[self.stop_idx]) < self.sampling / 2.0:
self.stop_len = self.sampling
self.stop_idx = (self.stop_idx + 1) % len(self.stop_pos)
return True
return False
# Dashed line
class DashedLineShader(StrokeShader):
def __init__(self, pattern):
StrokeShader.__init__(self)
self.pattern = pattern
def shade(self, stroke):
start = 0.0 # 2D curvilinear length
visible = True
# The extra 'sampling' term is added below, because the
# visibility attribute of the i-th vertex refers to the
# visibility of the stroke segment between the i-th and
# (i+1)-th vertices.
sampling = 1.0
it = stroke.stroke_vertices_begin(sampling)
pattern_cycle = cycle(self.pattern)
pattern = next(pattern_cycle)
for _svert in it:
pos = it.t # curvilinear abscissa
if pos - start + sampling > pattern:
start = pos
pattern = next(pattern_cycle)
visible = not visible
if not visible:
it.object.attribute.visible = False
# predicates for chaining
class AngleLargerThanBP1D(BinaryPredicate1D):
def __init__(self, angle):
BinaryPredicate1D.__init__(self)
self.angle = angle
def __call__(self, i1, i2):
sv1a = i1.first_fedge.first_svertex.point_2d
sv1b = i1.last_fedge.second_svertex.point_2d
sv2a = i2.first_fedge.first_svertex.point_2d
sv2b = i2.last_fedge.second_svertex.point_2d
if (sv1a - sv2a).length < 1e-6:
dir1 = sv1a - sv1b
dir2 = sv2b - sv2a
elif (sv1b - sv2b).length < 1e-6:
dir1 = sv1b - sv1a
dir2 = sv2a - sv2b
elif (sv1a - sv2b).length < 1e-6:
dir1 = sv1a - sv1b
dir2 = sv2a - sv2b
elif (sv1b - sv2a).length < 1e-6:
dir1 = sv1b - sv1a
dir2 = sv2b - sv2a
else:
return False
denom = dir1.length * dir2.length
if denom < 1e-6:
return False
x = (dir1 * dir2) / denom
return acos(bound(-1.0, x, 1.0)) > self.angle
# predicates for selection
class LengthThresholdUP1D(UnaryPredicate1D):
def __init__(self, length_min=None, length_max=None):
UnaryPredicate1D.__init__(self)
self.length_min = length_min
self.length_max = length_max
def __call__(self, inter):
length = inter.length_2d
if self.length_min is not None and length < self.length_min:
return False
if self.length_max is not None and length > self.length_max:
return False
return True
class FaceMarkBothUP1D(UnaryPredicate1D):
def __call__(self, inter: ViewEdge):
fe = inter.first_fedge
while fe is not None:
if fe.is_smooth:
if fe.face_mark:
return True
elif (fe.nature & Nature.BORDER):
if fe.face_mark_left:
return True
else:
if fe.face_mark_right and fe.face_mark_left:
return True
fe = fe.next_fedge
return False
class FaceMarkOneUP1D(UnaryPredicate1D):
def __call__(self, inter: ViewEdge):
fe = inter.first_fedge
while fe is not None:
if fe.is_smooth:
if fe.face_mark:
return True
elif (fe.nature & Nature.BORDER):
if fe.face_mark_left:
return True
else:
if fe.face_mark_right or fe.face_mark_left:
return True
fe = fe.next_fedge
return False
# predicates for splitting
class MaterialBoundaryUP0D(UnaryPredicate0D):
def __call__(self, it):
# can't use only it.is_end here, see commit rBeb8964fb7f19
if it.is_begin or it.at_last or it.is_end:
return False
it.decrement()
prev, v, succ = next(it), next(it), next(it)
fe = v.get_fedge(prev)
idx1 = fe.material_index if fe.is_smooth else fe.material_index_left
fe = v.get_fedge(succ)
idx2 = fe.material_index if fe.is_smooth else fe.material_index_left
return idx1 != idx2
class Curvature2DAngleThresholdUP0D(UnaryPredicate0D):
def __init__(self, angle_min=None, angle_max=None):
UnaryPredicate0D.__init__(self)
self.angle_min = angle_min
self.angle_max = angle_max
self.func = Curvature2DAngleF0D()
def __call__(self, inter):
angle = pi - self.func(inter)
if self.angle_min is not None and angle < self.angle_min:
return True
if self.angle_max is not None and angle > self.angle_max:
return True
return False
class Length2DThresholdUP0D(UnaryPredicate0D):
def __init__(self, length_limit):
UnaryPredicate0D.__init__(self)
self.length_limit = length_limit
self.t = 0.0
def __call__(self, inter):
t = inter.t # curvilinear abscissa
if t < self.t:
self.t = 0.0
return False
if t - self.t < self.length_limit:
return False
self.t = t
return True
# Seed for random number generation
class Seed:
def __init__(self):
self.t_max = 2 ** 15
self.t = int(time.time()) % self.t_max
def get(self, seed):
if seed < 0:
self.t = (self.t + 1) % self.t_max
return self.t
return seed
_seed = Seed()
def get_dashed_pattern(linestyle):
"""Extracts the dashed pattern from the various UI options """
pattern = []
if linestyle.dash1 > 0 and linestyle.gap1 > 0:
pattern.append(linestyle.dash1)
pattern.append(linestyle.gap1)
if linestyle.dash2 > 0 and linestyle.gap2 > 0:
pattern.append(linestyle.dash2)
pattern.append(linestyle.gap2)
if linestyle.dash3 > 0 and linestyle.gap3 > 0:
pattern.append(linestyle.dash3)
pattern.append(linestyle.gap3)
return pattern
def get_grouped_objects(group):
for ob in group.objects:
if ob.instance_type == 'COLLECTION' and ob.instance_collection is not None:
for dupli in get_grouped_objects(ob.instance_collection):
yield dupli
else:
yield ob
integration_types = {
'MEAN': IntegrationType.MEAN,
'MIN': IntegrationType.MIN,
'MAX': IntegrationType.MAX,
'FIRST': IntegrationType.FIRST,
'LAST': IntegrationType.LAST}
# main function for parameter processing
def process(layer_name, lineset_name):
scene = getCurrentScene()
layer = scene.view_layers[layer_name]
lineset = layer.freestyle_settings.linesets[lineset_name]
linestyle = lineset.linestyle
# execute line set pre-processing callback functions
for fn in callbacks_lineset_pre:
fn(scene, layer, lineset)
selection_criteria = []
# prepare selection criteria by visibility
if lineset.select_by_visibility:
if lineset.visibility == 'VISIBLE':
selection_criteria.append(
QuantitativeInvisibilityUP1D(0))
elif lineset.visibility == 'HIDDEN':
selection_criteria.append(
NotUP1D(QuantitativeInvisibilityUP1D(0)))
elif lineset.visibility == 'RANGE':
selection_criteria.append(
QuantitativeInvisibilityRangeUP1D(lineset.qi_start, lineset.qi_end))
# prepare selection criteria by edge types
if lineset.select_by_edge_types:
edge_type_criteria = []
if lineset.select_silhouette:
upred = pyNatureUP1D(Nature.SILHOUETTE)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_silhouette else upred)
if lineset.select_border:
upred = pyNatureUP1D(Nature.BORDER)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_border else upred)
if lineset.select_crease:
upred = pyNatureUP1D(Nature.CREASE)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_crease else upred)
if lineset.select_ridge_valley:
upred = pyNatureUP1D(Nature.RIDGE)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_ridge_valley else upred)
if lineset.select_suggestive_contour:
upred = pyNatureUP1D(Nature.SUGGESTIVE_CONTOUR)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_suggestive_contour else upred)
if lineset.select_material_boundary:
upred = pyNatureUP1D(Nature.MATERIAL_BOUNDARY)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_material_boundary else upred)
if lineset.select_edge_mark:
upred = pyNatureUP1D(Nature.EDGE_MARK)
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_edge_mark else upred)
if lineset.select_contour:
upred = ContourUP1D()
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_contour else upred)
if lineset.select_external_contour:
upred = ExternalContourUP1D()
edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_external_contour else upred)
if edge_type_criteria:
if lineset.edge_type_combination == 'OR':
upred = OrUP1D(*edge_type_criteria)
else:
upred = AndUP1D(*edge_type_criteria)
if lineset.edge_type_negation == 'EXCLUSIVE':
upred = NotUP1D(upred)
selection_criteria.append(upred)
# prepare selection criteria by face marks
if lineset.select_by_face_marks:
if lineset.face_mark_condition == 'BOTH':
upred = FaceMarkBothUP1D()
else:
upred = FaceMarkOneUP1D()
if lineset.face_mark_negation == 'EXCLUSIVE':
upred = NotUP1D(upred)
selection_criteria.append(upred)
# prepare selection criteria by group of objects
if lineset.select_by_collection:
if lineset.collection is not None:
names = {getQualifiedObjectName(ob): True for ob in get_grouped_objects(lineset.collection)}
upred = ObjectNamesUP1D(names, lineset.collection_negation == 'EXCLUSIVE')
selection_criteria.append(upred)
# prepare selection criteria by image border
if lineset.select_by_image_border:
upred = WithinImageBoundaryUP1D(*ContextFunctions.get_border())
selection_criteria.append(upred)
# select feature edges
if selection_criteria:
upred = AndUP1D(*selection_criteria)
else:
upred = TrueUP1D()
Operators.select(upred)
# join feature edges to form chains
if linestyle.use_chaining:
if linestyle.chaining == 'PLAIN':
if linestyle.use_same_object:
Operators.bidirectional_chain(ChainSilhouetteIterator(), NotUP1D(upred))
else:
Operators.bidirectional_chain(ChainPredicateIterator(upred, TrueBP1D()), NotUP1D(upred))
elif linestyle.chaining == 'SKETCHY':
if linestyle.use_same_object:
Operators.bidirectional_chain(pySketchyChainSilhouetteIterator(linestyle.rounds))
else:
Operators.bidirectional_chain(pySketchyChainingIterator(linestyle.rounds))
else:
Operators.chain(ChainPredicateIterator(FalseUP1D(), FalseBP1D()), NotUP1D(upred))
# split chains
if linestyle.material_boundary:
Operators.sequential_split(MaterialBoundaryUP0D())
if linestyle.use_angle_min or linestyle.use_angle_max:
angle_min = linestyle.angle_min if linestyle.use_angle_min else None
angle_max = linestyle.angle_max if linestyle.use_angle_max else None
Operators.sequential_split(Curvature2DAngleThresholdUP0D(angle_min, angle_max))
if linestyle.use_split_length:
Operators.sequential_split(Length2DThresholdUP0D(linestyle.split_length), 1.0)
if linestyle.use_split_pattern:
pattern = []
if linestyle.split_dash1 > 0 and linestyle.split_gap1 > 0:
pattern.append(linestyle.split_dash1)
pattern.append(linestyle.split_gap1)
if linestyle.split_dash2 > 0 and linestyle.split_gap2 > 0:
pattern.append(linestyle.split_dash2)
pattern.append(linestyle.split_gap2)
if linestyle.split_dash3 > 0 and linestyle.split_gap3 > 0:
pattern.append(linestyle.split_dash3)
pattern.append(linestyle.split_gap3)
if len(pattern) > 0:
sampling = 1.0
controller = SplitPatternController(pattern, sampling)
Operators.sequential_split(SplitPatternStartingUP0D(controller),
SplitPatternStoppingUP0D(controller),
sampling)
# sort selected chains
if linestyle.use_sorting:
integration = integration_types.get(linestyle.integration_type, IntegrationType.MEAN)
if linestyle.sort_key == 'DISTANCE_FROM_CAMERA':
bpred = pyZBP1D(integration)
elif linestyle.sort_key == '2D_LENGTH':
bpred = Length2DBP1D()
elif linestyle.sort_key == 'PROJECTED_X':
bpred = pyProjectedXBP1D(integration)
elif linestyle.sort_key == 'PROJECTED_Y':
bpred = pyProjectedYBP1D(integration)
if linestyle.sort_order == 'REVERSE':
bpred = NotBP1D(bpred)
Operators.sort(bpred)
# select chains
if linestyle.use_length_min or linestyle.use_length_max:
length_min = linestyle.length_min if linestyle.use_length_min else None
length_max = linestyle.length_max if linestyle.use_length_max else None
Operators.select(LengthThresholdUP1D(length_min, length_max))
if linestyle.use_chain_count:
Operators.select(pyNFirstUP1D(linestyle.chain_count))
# prepare a list of stroke shaders
shaders_list = []
for m in linestyle.geometry_modifiers:
if not m.use:
continue
if m.type == 'SAMPLING':
shaders_list.append(SamplingShader(
m.sampling))
elif m.type == 'BEZIER_CURVE':
shaders_list.append(BezierCurveShader(
m.error))
elif m.type == 'SIMPLIFICATION':
shaders_list.append(SimplificationShader(m.tolerance))
elif m.type == 'SINUS_DISPLACEMENT':
shaders_list.append(SinusDisplacementShader(
m.wavelength, m.amplitude, m.phase))
elif m.type == 'SPATIAL_NOISE':
shaders_list.append(SpatialNoiseShader(
m.amplitude, m.scale, m.octaves, m.smooth, m.use_pure_random))
elif m.type == 'PERLIN_NOISE_1D':
shaders_list.append(PerlinNoise1DShader(
m.frequency, m.amplitude, m.octaves, m.angle, _seed.get(m.seed)))
elif m.type == 'PERLIN_NOISE_2D':
shaders_list.append(PerlinNoise2DShader(
m.frequency, m.amplitude, m.octaves, m.angle, _seed.get(m.seed)))
elif m.type == 'BACKBONE_STRETCHER':
shaders_list.append(BackboneStretcherShader(
m.backbone_length))
elif m.type == 'TIP_REMOVER':
shaders_list.append(TipRemoverShader(
m.tip_length))
elif m.type == 'POLYGONIZATION':
shaders_list.append(PolygonalizationShader(
m.error))
elif m.type == 'GUIDING_LINES':
shaders_list.append(GuidingLinesShader(
m.offset))
elif m.type == 'BLUEPRINT':
if m.shape == 'CIRCLES':
shaders_list.append(pyBluePrintCirclesShader(
m.rounds, m.random_radius, m.random_center))
elif m.shape == 'ELLIPSES':
shaders_list.append(pyBluePrintEllipsesShader(
m.rounds, m.random_radius, m.random_center))
elif m.shape == 'SQUARES':
shaders_list.append(pyBluePrintSquaresShader(
m.rounds, m.backbone_length, m.random_backbone))
elif m.type == '2D_OFFSET':
shaders_list.append(Offset2DShader(
m.start, m.end, m.x, m.y))
elif m.type == '2D_TRANSFORM':
shaders_list.append(Transform2DShader(
m.pivot, m.scale_x, m.scale_y, m.angle, m.pivot_u, m.pivot_x, m.pivot_y))
# -- Base color, alpha and thickness -- #
if (not linestyle.use_chaining) or (linestyle.chaining == 'PLAIN' and linestyle.use_same_object):
thickness_position = linestyle.thickness_position
else:
thickness_position = 'CENTER'
import bpy
if bpy.app.debug_freestyle:
print("Warning: Thickness position options are applied when chaining is disabled\n"
" or the Plain chaining is used with the Same Object option enabled.")
shaders_list.append(ConstantColorShader(*(linestyle.color), alpha=linestyle.alpha))
shaders_list.append(BaseThicknessShader(linestyle.thickness, thickness_position,
linestyle.thickness_ratio))
# -- Modifiers -- #
for m in linestyle.color_modifiers:
if not m.use:
continue
if m.type == 'ALONG_STROKE':
shaders_list.append(ColorAlongStrokeShader(
m.blend, m.influence, m.color_ramp))
elif m.type == 'DISTANCE_FROM_CAMERA':
shaders_list.append(ColorDistanceFromCameraShader(
m.blend, m.influence, m.color_ramp,
m.range_min, m.range_max))
elif m.type == 'DISTANCE_FROM_OBJECT':
if m.target is not None:
shaders_list.append(ColorDistanceFromObjectShader(
m.blend, m.influence, m.color_ramp, m.target,
m.range_min, m.range_max))
elif m.type == 'MATERIAL':
shaders_list.append(ColorMaterialShader(
m.blend, m.influence, m.color_ramp, m.material_attribute,
m.use_ramp))
elif m.type == 'TANGENT':
shaders_list.append(TangentColorShader(
m.blend, m.influence, m.color_ramp))
elif m.type == 'CREASE_ANGLE':
shaders_list.append(CreaseAngleColorShader(
m.blend, m.influence, m.color_ramp,
m.angle_min, m.angle_max))
elif m.type == 'CURVATURE_3D':
shaders_list.append(Curvature3DColorShader(
m.blend, m.influence, m.color_ramp,
m.curvature_min, m.curvature_max))
elif m.type == 'NOISE':
shaders_list.append(ColorNoiseShader(
m.blend, m.influence, m.color_ramp,
m.amplitude, m.period, m.seed))
for m in linestyle.alpha_modifiers:
if not m.use:
continue
if m.type == 'ALONG_STROKE':
shaders_list.append(AlphaAlongStrokeShader(
m.blend, m.influence, m.mapping, m.invert, m.curve))
elif m.type == 'DISTANCE_FROM_CAMERA':
shaders_list.append(AlphaDistanceFromCameraShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.range_min, m.range_max))
elif m.type == 'DISTANCE_FROM_OBJECT':
if m.target is not None:
shaders_list.append(AlphaDistanceFromObjectShader(
m.blend, m.influence, m.mapping, m.invert, m.curve, m.target,
m.range_min, m.range_max))
elif m.type == 'MATERIAL':
shaders_list.append(AlphaMaterialShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.material_attribute))
elif m.type == 'TANGENT':
shaders_list.append(TangentAlphaShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,))
elif m.type == 'CREASE_ANGLE':
shaders_list.append(CreaseAngleAlphaShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.angle_min, m.angle_max))
elif m.type == 'CURVATURE_3D':
shaders_list.append(Curvature3DAlphaShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.curvature_min, m.curvature_max))
elif m.type == 'NOISE':
shaders_list.append(AlphaNoiseShader(
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.amplitude, m.period, m.seed))
for m in linestyle.thickness_modifiers:
if not m.use:
continue
if m.type == 'ALONG_STROKE':
shaders_list.append(ThicknessAlongStrokeShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.value_min, m.value_max))
elif m.type == 'DISTANCE_FROM_CAMERA':
shaders_list.append(ThicknessDistanceFromCameraShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.range_min, m.range_max, m.value_min, m.value_max))
elif m.type == 'DISTANCE_FROM_OBJECT':
if m.target is not None:
shaders_list.append(ThicknessDistanceFromObjectShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve, m.target,
m.range_min, m.range_max, m.value_min, m.value_max))
elif m.type == 'MATERIAL':
shaders_list.append(ThicknessMaterialShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.material_attribute, m.value_min, m.value_max))
elif m.type == 'CALLIGRAPHY':
shaders_list.append(CalligraphicThicknessShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence,
m.orientation, m.thickness_min, m.thickness_max))
elif m.type == 'TANGENT':
shaders_list.append(TangentThicknessShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.thickness_min, m.thickness_max))
elif m.type == 'NOISE':
shaders_list.append(ThicknessNoiseShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence,
m.amplitude, m.period, m.seed, m.use_asymmetric))
elif m.type == 'CREASE_ANGLE':
shaders_list.append(CreaseAngleThicknessShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.angle_min, m.angle_max, m.thickness_min, m.thickness_max))
elif m.type == 'CURVATURE_3D':
shaders_list.append(Curvature3DThicknessShader(
thickness_position, linestyle.thickness_ratio,
m.blend, m.influence, m.mapping, m.invert, m.curve,
m.curvature_min, m.curvature_max, m.thickness_min, m.thickness_max))
else:
raise RuntimeError("No Thickness modifier with type", type(m), m)
# -- Textures -- #
has_tex = False
if linestyle.use_nodes and linestyle.node_tree:
shaders_list.append(BlenderTextureShader(linestyle.node_tree))
has_tex = True
if has_tex:
shaders_list.append(StrokeTextureStepShader(linestyle.texture_spacing))
# execute post-base stylization callbacks
for fn in callbacks_modifiers_post:
shaders_list.extend(fn(scene, layer, lineset))
# -- Stroke caps -- #
if linestyle.caps == 'ROUND':
shaders_list.append(RoundCapShader())
elif linestyle.caps == 'SQUARE':
shaders_list.append(SquareCapShader())
# -- Dashed line -- #
if linestyle.use_dashed_line:
pattern = get_dashed_pattern(linestyle)
if len(pattern) > 0:
shaders_list.append(DashedLineShader(pattern))
# create strokes using the shaders list
Operators.create(TrueUP1D(), shaders_list)
# execute line set post-processing callback functions
for fn in callbacks_lineset_post:
fn(scene, layer, lineset)
|