File: bl_pyapi_prop_array.py

package info (click to toggle)
blender 4.3.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 309,564 kB
  • sloc: cpp: 2,385,210; python: 330,236; ansic: 280,972; xml: 2,446; sh: 972; javascript: 317; makefile: 170
file content (323 lines) | stat: -rw-r--r-- 11,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# SPDX-FileCopyrightText: 2020-2023 Blender Authors
#
# SPDX-License-Identifier: Apache-2.0

# ./blender.bin --background --python tests/python/bl_pyapi_prop_array.py -- --verbose
import bpy
from bpy.props import (
    BoolVectorProperty,
    FloatVectorProperty,
    IntVectorProperty,
)
import unittest
import numpy as np

id_inst = bpy.context.scene
id_type = bpy.types.Scene


# -----------------------------------------------------------------------------
# Utility Functions

def seq_items_xform(data, xform_fn):
    """
    Recursively expand items using ``xform_fn``.
    """
    if hasattr(data, "__len__"):
        return tuple(seq_items_xform(v, xform_fn) for v in data)
    return xform_fn(data)


def seq_items_as_tuple(data):
    """
    Return nested sequences as a nested tuple.
    Useful when comparing different kinds of nested sequences.
    """
    return seq_items_xform(data, lambda v: v)


def seq_items_as_dims(data):
    """
    Nested length calculation, extracting the length from each sequence.
    Where a 4x4 matrix returns ``(4, 4)`` for example.
    """
    return ((len(data),) + seq_items_as_dims(data[0])) if hasattr(data, "__len__") else ()


# -----------------------------------------------------------------------------
# Tests

class TestPropArray(unittest.TestCase):
    def setUp(self):
        id_type.test_array_f = FloatVectorProperty(size=10)
        id_type.test_array_f_2d = FloatVectorProperty(size=(4, 1))
        id_type.test_array_f_3d = FloatVectorProperty(size=(3, 2, 4))
        id_type.test_array_i = IntVectorProperty(size=10)
        id_type.test_array_i_2d = IntVectorProperty(size=(4, 1))
        id_type.test_array_i_3d = IntVectorProperty(size=(3, 2, 4))

    def tearDown(self):
        del id_type.test_array_f
        del id_type.test_array_f_2d
        del id_type.test_array_f_3d
        del id_type.test_array_i
        del id_type.test_array_i_2d
        del id_type.test_array_i_3d

    @staticmethod
    def parse_test_args(prop_array_first_dim, prop_type, prop_size):
        match prop_type:
            case 'INT':
                expected_dtype = np.int32
                wrong_kind_dtype = np.float32
                wrong_size_dtype = np.int64
            case 'FLOAT':
                expected_dtype = np.float32
                wrong_kind_dtype = np.int32
                wrong_size_dtype = np.float64
            case _:
                raise AssertionError("Unexpected property type '%s'" % prop_type)

        expected_length = np.prod(prop_size)
        num_dims = len(prop_size)

        assert expected_length > 0
        too_short_length = expected_length - 1

        match num_dims:
            case 1:
                def get_flat_iterable_all_dimensions():
                    return prop_array_first_dim[:]
            case 2:
                def get_flat_iterable_all_dimensions():
                    return (flat_elem for array_1d in prop_array_first_dim[:] for flat_elem in array_1d[:])
            case 3:
                def get_flat_iterable_all_dimensions():
                    return (flat_elem
                            for array_2d in prop_array_first_dim[:]
                            for array_1d in array_2d[:]
                            for flat_elem in array_1d[:])
            case _:
                raise AssertionError("Number of dimensions must be 1, 2 or 3, but was %i" % num_dims)

        return (expected_dtype, wrong_kind_dtype, wrong_size_dtype, expected_length, too_short_length,
                get_flat_iterable_all_dimensions)

    def do_test_foreach_getset_current_dimension(self, prop_array, expected_dtype, wrong_kind_dtype, wrong_size_dtype,
                                                 expected_length, too_short_length, get_flat_iterable_all_dimensions):
        with self.assertRaises(TypeError):
            prop_array.foreach_set(range(too_short_length))

        prop_array.foreach_set(range(5, 5 + expected_length))

        with self.assertRaises(TypeError):
            prop_array.foreach_set(np.arange(too_short_length, dtype=expected_dtype))

        with self.assertRaises(TypeError):
            prop_array.foreach_set(np.arange(expected_length, dtype=wrong_size_dtype))

        with self.assertRaises(TypeError):
            prop_array.foreach_get(np.arange(expected_length, dtype=wrong_kind_dtype))

        a = np.arange(expected_length, dtype=expected_dtype)
        prop_array.foreach_set(a)

        with self.assertRaises(TypeError):
            prop_array.foreach_set(a[:too_short_length])

        for v1, v2 in zip(a, get_flat_iterable_all_dimensions()):
            self.assertEqual(v1, v2)

        b = np.empty(expected_length, dtype=expected_dtype)
        prop_array.foreach_get(b)
        for v1, v2 in zip(a, b):
            self.assertEqual(v1, v2)

        b = [None] * expected_length
        prop_array.foreach_get(b)
        for v1, v2 in zip(a, b):
            self.assertEqual(v1, v2)

    def do_test_foreach_getset(self, prop_array, prop_type, prop_size):
        if not isinstance(prop_size, (tuple, list)):
            prop_size = (prop_size,)
        num_dimensions = len(prop_size)

        test_args = self.parse_test_args(prop_array, prop_type, prop_size)

        # Test that foreach_get/foreach_set work, and work the same regardless of the current dimension/sub-array being
        # accessed.
        self.do_test_foreach_getset_current_dimension(prop_array, *test_args)
        if num_dimensions > 1:
            for i in range(prop_size[0]):
                self.do_test_foreach_getset_current_dimension(prop_array[i], *test_args)
                if num_dimensions > 2:
                    for j in range(prop_size[1]):
                        self.do_test_foreach_getset_current_dimension(prop_array[i][j], *test_args)

    def test_foreach_getset_i(self):
        self.do_test_foreach_getset(id_inst.test_array_i, 'INT', 10)

    def test_foreach_getset_f(self):
        self.do_test_foreach_getset(id_inst.test_array_f, 'FLOAT', 10)

    def test_foreach_getset_i_2d(self):
        self.do_test_foreach_getset(id_inst.test_array_i_2d, 'INT', (4, 1))

    def test_foreach_getset_f_2d(self):
        self.do_test_foreach_getset(id_inst.test_array_f_2d, 'FLOAT', (4, 1))

    def test_foreach_getset_i_3d(self):
        self.do_test_foreach_getset(id_inst.test_array_i_3d, 'INT', (3, 2, 4))

    def test_foreach_getset_f_3d(self):
        self.do_test_foreach_getset(id_inst.test_array_f_3d, 'FLOAT', (3, 2, 4))


class TestPropArrayMultiDimensional(unittest.TestCase):

    def setUp(self):
        self._initial_dir = set(dir(id_type))

    def tearDown(self):
        for member in (set(dir(id_type)) - self._initial_dir):
            delattr(id_type, member)

    def test_defaults(self):
        # The data is in int format, converted into float & bool to avoid duplication.
        default_data = (
            # 1D.
            (1,),
            (1, 2),
            (1, 2, 3),
            (1, 2, 3, 4),
            # 2D.
            ((1,),),
            ((1,), (11,)),
            ((1, 2), (11, 22)),
            ((1, 2, 3), (11, 22, 33)),
            ((1, 2, 3, 4), (11, 22, 33, 44)),
            # 3D.
            (((1,),),),
            ((1,), (11,), (111,)),
            ((1, 2), (11, 22), (111, 222),),
            ((1, 2, 3), (11, 22, 33), (111, 222, 333)),
            ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444)),
        )
        for data in default_data:
            for (vector_prop_fn, xform_fn) in (
                    (BoolVectorProperty, lambda v: bool(v % 2)),
                    (FloatVectorProperty, lambda v: float(v)),
                    (IntVectorProperty, lambda v: v),
            ):
                data_native = seq_items_xform(data, xform_fn)
                size = seq_items_as_dims(data)
                id_type.temp = vector_prop_fn(size=size, default=data_native)
                data_as_tuple = seq_items_as_tuple(id_inst.temp)
                self.assertEqual(data_as_tuple, data_native)
                del id_type.temp

    def test_matrix(self):
        data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
        data_native = seq_items_xform(data, lambda v: float(v))
        id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', default=data_native)
        data_as_tuple = seq_items_as_tuple(id_inst.temp)
        self.assertEqual(data_as_tuple, data_native)
        del id_type.temp

    def test_matrix_with_callbacks(self):
        # """
        # Internally matrices have rows/columns swapped,
        # This test ensures this is being done properly.
        # """
        data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
        data_native = seq_items_xform(data, lambda v: float(v))
        local_data = {"array": data}

        def get_fn(id_arg):
            return local_data["array"]

        def set_fn(id_arg, value):
            local_data["array"] = value

        id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', get=get_fn, set=set_fn)
        id_inst.temp = data_native
        data_as_tuple = seq_items_as_tuple(id_inst.temp)
        self.assertEqual(data_as_tuple, data_native)
        del id_type.temp


class TestPropArrayDynamicAssign(unittest.TestCase):
    """
    Pixels are dynamic in the sense the size can change however the assignment does not define the size.
    """

    dims = 12

    def setUp(self):
        self.image = bpy.data.images.new("", self.dims, self.dims)

    def tearDown(self):
        bpy.data.images.remove(self.image)
        self.image = None

    def test_assign_fixed_under_1px(self):
        image = self.image
        with self.assertRaises(ValueError):
            image.pixels = [1.0, 1.0, 1.0, 1.0]

    def test_assign_fixed_under_0px(self):
        image = self.image
        with self.assertRaises(ValueError):
            image.pixels = []

    def test_assign_fixed_over_by_1px(self):
        image = self.image
        with self.assertRaises(ValueError):
            image.pixels = ([1.0, 1.0, 1.0, 1.0] * (self.dims * self.dims)) + [1.0]

    def test_assign_fixed(self):
        # Valid assignment, ensure it works as intended.
        image = self.image
        values = [1.0, 0.0, 1.0, 0.0] * (self.dims * self.dims)
        image.pixels = values
        self.assertEqual(tuple(values), tuple(image.pixels))


class TestPropArrayDynamicArg(unittest.TestCase):
    """
    Index array, a dynamic array argument which defines its own length.
    """

    dims = 8

    def setUp(self):
        self.me = bpy.data.meshes.new("")
        self.me.vertices.add(self.dims)
        self.ob = bpy.data.objects.new("", self.me)

    def tearDown(self):
        bpy.data.objects.remove(self.ob)
        bpy.data.meshes.remove(self.me)
        self.me = None
        self.ob = None

    def test_param_dynamic(self):
        ob = self.ob
        vg = ob.vertex_groups.new(name="")

        # Add none.
        vg.add(index=(), weight=1.0, type='REPLACE')
        for i in range(self.dims):
            with self.assertRaises(RuntimeError):
                vg.weight(i)

        # Add all.
        vg.add(index=range(self.dims), weight=1.0, type='REPLACE')
        self.assertEqual(tuple([1.0] * self.dims), tuple([vg.weight(i) for i in range(self.dims)]))


if __name__ == '__main__':
    import sys
    sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [])
    unittest.main()