1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
# SPDX-FileCopyrightText: 2020-2023 Blender Authors
#
# SPDX-License-Identifier: Apache-2.0
# ./blender.bin --background --python tests/python/bl_pyapi_prop_array.py -- --verbose
import bpy
from bpy.props import (
BoolVectorProperty,
FloatVectorProperty,
IntVectorProperty,
)
import unittest
import numpy as np
id_inst = bpy.context.scene
id_type = bpy.types.Scene
# -----------------------------------------------------------------------------
# Utility Functions
def seq_items_xform(data, xform_fn):
"""
Recursively expand items using ``xform_fn``.
"""
if hasattr(data, "__len__"):
return tuple(seq_items_xform(v, xform_fn) for v in data)
return xform_fn(data)
def seq_items_as_tuple(data):
"""
Return nested sequences as a nested tuple.
Useful when comparing different kinds of nested sequences.
"""
return seq_items_xform(data, lambda v: v)
def seq_items_as_dims(data):
"""
Nested length calculation, extracting the length from each sequence.
Where a 4x4 matrix returns ``(4, 4)`` for example.
"""
return ((len(data),) + seq_items_as_dims(data[0])) if hasattr(data, "__len__") else ()
# -----------------------------------------------------------------------------
# Tests
class TestPropArray(unittest.TestCase):
def setUp(self):
id_type.test_array_f = FloatVectorProperty(size=10)
id_type.test_array_f_2d = FloatVectorProperty(size=(4, 1))
id_type.test_array_f_3d = FloatVectorProperty(size=(3, 2, 4))
id_type.test_array_i = IntVectorProperty(size=10)
id_type.test_array_i_2d = IntVectorProperty(size=(4, 1))
id_type.test_array_i_3d = IntVectorProperty(size=(3, 2, 4))
def tearDown(self):
del id_type.test_array_f
del id_type.test_array_f_2d
del id_type.test_array_f_3d
del id_type.test_array_i
del id_type.test_array_i_2d
del id_type.test_array_i_3d
@staticmethod
def parse_test_args(prop_array_first_dim, prop_type, prop_size):
match prop_type:
case 'INT':
expected_dtype = np.int32
wrong_kind_dtype = np.float32
wrong_size_dtype = np.int64
case 'FLOAT':
expected_dtype = np.float32
wrong_kind_dtype = np.int32
wrong_size_dtype = np.float64
case _:
raise AssertionError("Unexpected property type '%s'" % prop_type)
expected_length = np.prod(prop_size)
num_dims = len(prop_size)
assert expected_length > 0
too_short_length = expected_length - 1
match num_dims:
case 1:
def get_flat_iterable_all_dimensions():
return prop_array_first_dim[:]
case 2:
def get_flat_iterable_all_dimensions():
return (flat_elem for array_1d in prop_array_first_dim[:] for flat_elem in array_1d[:])
case 3:
def get_flat_iterable_all_dimensions():
return (flat_elem
for array_2d in prop_array_first_dim[:]
for array_1d in array_2d[:]
for flat_elem in array_1d[:])
case _:
raise AssertionError("Number of dimensions must be 1, 2 or 3, but was %i" % num_dims)
return (expected_dtype, wrong_kind_dtype, wrong_size_dtype, expected_length, too_short_length,
get_flat_iterable_all_dimensions)
def do_test_foreach_getset_current_dimension(self, prop_array, expected_dtype, wrong_kind_dtype, wrong_size_dtype,
expected_length, too_short_length, get_flat_iterable_all_dimensions):
with self.assertRaises(TypeError):
prop_array.foreach_set(range(too_short_length))
prop_array.foreach_set(range(5, 5 + expected_length))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(too_short_length, dtype=expected_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(expected_length, dtype=wrong_size_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_get(np.arange(expected_length, dtype=wrong_kind_dtype))
a = np.arange(expected_length, dtype=expected_dtype)
prop_array.foreach_set(a)
with self.assertRaises(TypeError):
prop_array.foreach_set(a[:too_short_length])
for v1, v2 in zip(a, get_flat_iterable_all_dimensions()):
self.assertEqual(v1, v2)
b = np.empty(expected_length, dtype=expected_dtype)
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
b = [None] * expected_length
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
def do_test_foreach_getset(self, prop_array, prop_type, prop_size):
if not isinstance(prop_size, (tuple, list)):
prop_size = (prop_size,)
num_dimensions = len(prop_size)
test_args = self.parse_test_args(prop_array, prop_type, prop_size)
# Test that foreach_get/foreach_set work, and work the same regardless of the current dimension/sub-array being
# accessed.
self.do_test_foreach_getset_current_dimension(prop_array, *test_args)
if num_dimensions > 1:
for i in range(prop_size[0]):
self.do_test_foreach_getset_current_dimension(prop_array[i], *test_args)
if num_dimensions > 2:
for j in range(prop_size[1]):
self.do_test_foreach_getset_current_dimension(prop_array[i][j], *test_args)
def test_foreach_getset_i(self):
self.do_test_foreach_getset(id_inst.test_array_i, 'INT', 10)
def test_foreach_getset_f(self):
self.do_test_foreach_getset(id_inst.test_array_f, 'FLOAT', 10)
def test_foreach_getset_i_2d(self):
self.do_test_foreach_getset(id_inst.test_array_i_2d, 'INT', (4, 1))
def test_foreach_getset_f_2d(self):
self.do_test_foreach_getset(id_inst.test_array_f_2d, 'FLOAT', (4, 1))
def test_foreach_getset_i_3d(self):
self.do_test_foreach_getset(id_inst.test_array_i_3d, 'INT', (3, 2, 4))
def test_foreach_getset_f_3d(self):
self.do_test_foreach_getset(id_inst.test_array_f_3d, 'FLOAT', (3, 2, 4))
class TestPropArrayMultiDimensional(unittest.TestCase):
def setUp(self):
self._initial_dir = set(dir(id_type))
def tearDown(self):
for member in (set(dir(id_type)) - self._initial_dir):
delattr(id_type, member)
def test_defaults(self):
# The data is in int format, converted into float & bool to avoid duplication.
default_data = (
# 1D.
(1,),
(1, 2),
(1, 2, 3),
(1, 2, 3, 4),
# 2D.
((1,),),
((1,), (11,)),
((1, 2), (11, 22)),
((1, 2, 3), (11, 22, 33)),
((1, 2, 3, 4), (11, 22, 33, 44)),
# 3D.
(((1,),),),
((1,), (11,), (111,)),
((1, 2), (11, 22), (111, 222),),
((1, 2, 3), (11, 22, 33), (111, 222, 333)),
((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444)),
)
for data in default_data:
for (vector_prop_fn, xform_fn) in (
(BoolVectorProperty, lambda v: bool(v % 2)),
(FloatVectorProperty, lambda v: float(v)),
(IntVectorProperty, lambda v: v),
):
data_native = seq_items_xform(data, xform_fn)
size = seq_items_as_dims(data)
id_type.temp = vector_prop_fn(size=size, default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix(self):
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix_with_callbacks(self):
# """
# Internally matrices have rows/columns swapped,
# This test ensures this is being done properly.
# """
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
local_data = {"array": data}
def get_fn(id_arg):
return local_data["array"]
def set_fn(id_arg, value):
local_data["array"] = value
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', get=get_fn, set=set_fn)
id_inst.temp = data_native
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
class TestPropArrayDynamicAssign(unittest.TestCase):
"""
Pixels are dynamic in the sense the size can change however the assignment does not define the size.
"""
dims = 12
def setUp(self):
self.image = bpy.data.images.new("", self.dims, self.dims)
def tearDown(self):
bpy.data.images.remove(self.image)
self.image = None
def test_assign_fixed_under_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = [1.0, 1.0, 1.0, 1.0]
def test_assign_fixed_under_0px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = []
def test_assign_fixed_over_by_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = ([1.0, 1.0, 1.0, 1.0] * (self.dims * self.dims)) + [1.0]
def test_assign_fixed(self):
# Valid assignment, ensure it works as intended.
image = self.image
values = [1.0, 0.0, 1.0, 0.0] * (self.dims * self.dims)
image.pixels = values
self.assertEqual(tuple(values), tuple(image.pixels))
class TestPropArrayDynamicArg(unittest.TestCase):
"""
Index array, a dynamic array argument which defines its own length.
"""
dims = 8
def setUp(self):
self.me = bpy.data.meshes.new("")
self.me.vertices.add(self.dims)
self.ob = bpy.data.objects.new("", self.me)
def tearDown(self):
bpy.data.objects.remove(self.ob)
bpy.data.meshes.remove(self.me)
self.me = None
self.ob = None
def test_param_dynamic(self):
ob = self.ob
vg = ob.vertex_groups.new(name="")
# Add none.
vg.add(index=(), weight=1.0, type='REPLACE')
for i in range(self.dims):
with self.assertRaises(RuntimeError):
vg.weight(i)
# Add all.
vg.add(index=range(self.dims), weight=1.0, type='REPLACE')
self.assertEqual(tuple([1.0] * self.dims), tuple([vg.weight(i) for i in range(self.dims)]))
if __name__ == '__main__':
import sys
sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [])
unittest.main()
|