1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
|
# Contents
* **[Contents](BLISObjectAPI.md#contents)**
* **[Operation index](BLISObjectAPI.md#operation-index)**
* **[Introduction](BLISObjectAPI.md#introduction)**
* [BLIS types](BLISObjectAPI.md#blis-types)
* [Integer-based types](BLISObjectAPI.md#integer-based-types)
* [Floating-point types](BLISObjectAPI.md#floating-point-types)
* [Enumerated parameter types](BLISObjectAPI.md#enumerated-parameter-types)
* [Global scalar constants](BLISObjectAPI.md#global-scalar-constants)
* [Basic vs expert interfaces](BLISObjectAPI.md#basic-vs-expert-interfaces)
* [Context type](BLISObjectAPI.md#context-type)
* [Runtime type](BLISObjectAPI.md#runtime-type)
* [BLIS header file](BLISObjectAPI.md#blis-header-file)
* [Initialization and cleanup](BLISObjectAPI.md#initialization-and-cleanup)
* **[Object management](BLISObjectAPI.md#object-management)**
* [Object creation function reference](BLISObjectAPI.md#object-creation-function-reference)
* [Object accessor function reference](BLISObjectAPI.md#object-accessor-function-reference)
* [Object mutator function reference](BLISObjectAPI.md#object-mutator-function-reference)
* [Other object function reference](BLISObjectAPI.md#other-object-function-reference)
* **[Computational function reference](BLISObjectAPI.md#computational-function-reference)**
* [Level-1v operations](BLISObjectAPI.md#level-1v-operations)
* [Level-1d operations](BLISObjectAPI.md#level-1d-operations)
* [Level-1m operations](BLISObjectAPI.md#level-1m-operations)
* [Level-1f operations](BLISObjectAPI.md#level-1f-operations)
* [Level-2 operations](BLISObjectAPI.md#level-2-operations)
* [Level-3 operations](BLISObjectAPI.md#level-3-operations)
* [Utility operations](BLISObjectAPI.md#utility-operations)
* **[Query function reference](BLISObjectAPI.md#query-function-reference)**
* [General library information](BLISObjectAPI.md#general-library-information)
* [Specific configuration](BLISObjectAPI.md#specific-configuration)
* [General configuration](BLISObjectAPI.md#general-configuration)
* [Kernel information](BLISObjectAPI.md#kernel-information)
* [Clock functions](BLISObjectAPI.md#clock-functions)
* **[Example code](BLISObjectAPI.md#example-code)**
# Operation index
This index provides a quick way to jump directly to the description for each operation discussed later in the [Computational function reference](BLISObjectAPI.md#computational-function-reference) section:
* **[Level-1v](BLISObjectAPI.md#level-1v-operations)**: Operations on vectors:
* [addv](BLISObjectAPI.md#addv), [amaxv](BLISObjectAPI.md#amaxv), [axpyv](BLISObjectAPI.md#axpyv), [axpbyv](BLISObjectAPI.md#axpbyv), [copyv](BLISObjectAPI.md#copyv), [dotv](BLISObjectAPI.md#dotv), [dotxv](BLISObjectAPI.md#dotxv), [invertv](BLISObjectAPI.md#invertv), [invscalv](BLISObjectAPI.md#invscalv), [scalv](BLISObjectAPI.md#scalv), [scal2v](BLISObjectAPI.md#scal2v), [setv](BLISObjectAPI.md#setv), [setrv](BLISObjectAPI.md#setrv), [setiv](BLISObjectAPI.md#setiv), [subv](BLISObjectAPI.md#subv), [swapv](BLISObjectAPI.md#swapv), [xpbyv](BLISObjectAPI.md#xpbyv)
* **[Level-1d](BLISObjectAPI.md#level-1d-operations)**: Element-wise operations on matrix diagonals:
* [addd](BLISObjectAPI.md#addd), [axpyd](BLISObjectAPI.md#axpyd), [copyd](BLISObjectAPI.md#copyd), [invertd](BLISObjectAPI.md#invertd), [invscald](BLISObjectAPI.md#invscald), [scald](BLISObjectAPI.md#scald), [scal2d](BLISObjectAPI.md#scal2d), [setd](BLISObjectAPI.md#setd), [setid](BLISObjectAPI.md#setid), [shiftd](BLISObjectAPI.md#shiftd), [subd](BLISObjectAPI.md#subd), [xpbyd](BLISObjectAPI.md#xpbyd)
* **[Level-1m](BLISObjectAPI.md#level-1m-operations)**: Element-wise operations on matrices:
* [addm](BLISObjectAPI.md#addm), [axpym](BLISObjectAPI.md#axpym), [copym](BLISObjectAPI.md#copym), [invscalm](BLISObjectAPI.md#invscalm), [scalm](BLISObjectAPI.md#scalm), [scal2m](BLISObjectAPI.md#scal2m), [setm](BLISObjectAPI.md#setm), [setrm](BLISObjectAPI.md#setrm), [setim](BLISObjectAPI.md#setim), [subm](BLISObjectAPI.md#subm)
* **[Level-1f](BLISObjectAPI.md#level-1f-operations)**: Fused operations on multiple vectors:
* [axpy2v](BLISObjectAPI.md#axpy2v), [dotaxpyv](BLISObjectAPI.md#dotaxpyv), [axpyf](BLISObjectAPI.md#axpyf), [dotxf](BLISObjectAPI.md#dotxf), [dotxaxpyf](BLISObjectAPI.md#dotxaxpyf)
* **[Level-2](BLISObjectAPI.md#level-2-operations)**: Operations with one matrix and (at least) one vector operand:
* [gemv](BLISObjectAPI.md#gemv), [ger](BLISObjectAPI.md#ger), [hemv](BLISObjectAPI.md#hemv), [her](BLISObjectAPI.md#her), [her2](BLISObjectAPI.md#her2), [symv](BLISObjectAPI.md#symv), [syr](BLISObjectAPI.md#syr), [syr2](BLISObjectAPI.md#syr2), [trmv](BLISObjectAPI.md#trmv), [trsv](BLISObjectAPI.md#trsv)
* **[Level-3](BLISObjectAPI.md#level-3-operations)**: Operations with matrices that are multiplication-like:
* [gemm](BLISObjectAPI.md#gemm), [hemm](BLISObjectAPI.md#hemm), [herk](BLISObjectAPI.md#herk), [her2k](BLISObjectAPI.md#her2k), [symm](BLISObjectAPI.md#symm), [syrk](BLISObjectAPI.md#syrk), [syr2k](BLISObjectAPI.md#syr2k), [trmm](BLISObjectAPI.md#trmm), [trmm3](BLISObjectAPI.md#trmm3), [trsm](BLISObjectAPI.md#trsm)
* **[Utility](BLISObjectAPI.md#Utility-operations)**: Miscellaneous operations on matrices and vectors:
* [asumv](BLISObjectAPI.md#asumv), [norm1v](BLISObjectAPI.md#norm1v), [normfv](BLISObjectAPI.md#normfv), [normiv](BLISObjectAPI.md#normiv), [norm1m](BLISObjectAPI.md#norm1m), [normfm](BLISObjectAPI.md#normfm), [normim](BLISObjectAPI.md#normim), [mkherm](BLISObjectAPI.md#mkherm), [mksymm](BLISObjectAPI.md#mksymm), [mktrim](BLISObjectAPI.md#mktrim), [fprintv](BLISObjectAPI.md#fprintv), [fprintm](BLISObjectAPI.md#fprintm),[printv](BLISObjectAPI.md#printv), [printm](BLISObjectAPI.md#printm), [randv](BLISObjectAPI.md#randv), [randm](BLISObjectAPI.md#randm), [sumsqv](BLISObjectAPI.md#sumsqv), [getsc](BLISObjectAPI.md#getsc), [getijv](BLISObjectAPI.md#getijv), [getijm](BLISObjectAPI.md#getijm), [setsc](BLISObjectAPI.md#setsc), [setijv](BLISObjectAPI.md#setijv), [setijm](BLISObjectAPI.md#setijm), [eqsc](BLISObjectAPI.md#eqsc), [eqv](BLISObjectAPI.md#eqv), [eqm](BLISObjectAPI.md#eqm)
# Introduction
This document summarizes one of the primary native APIs in BLIS--the object API. Here, we also discuss BLIS-specific type definitions, header files, and prototypes to auxiliary functions.
There are many functions that BLIS implements that are not listed here, either because they are lower-level functions, or they are considered for use primarily by developers and experts.
The object API was given its name (a) because it abstracts the floating-point types of its operands (along with many other properties) within a `typedef struct {...}` data structure, and (b) to contrast it with the other native API in BLIS, the typed API, which is [documented here](BLISTypedAPI.md). (The third API supported by BLIS is the BLAS compatibility layer, which mimics conventional Fortran-77 BLAS.)
In general, this document should be treated more as a reference than a place to learn how to use BLIS in your application. Thus, we highly encourage all readers to first study the [example code](BLISObjectAPI.md#example-code) provided within the BLIS source distribution.
## BLIS types
The following tables list various types used throughout the BLIS object API.
### Integer-based types
| BLIS integer type | Type definition | Used to represent... |
|:------------------|:-------------------------|:---------------------------------------------------------------------|
| `gint_t` | `int32_t` or `int64_t` | general-purpose signed integer; used to define signed integer types. |
| `guint_t` | `uint32_t` or `uint64_t` | general-purpose signed integer; used to define signed integer types. |
| `dim_t` | `gint_t` | matrix and vector dimensions. |
| `inc_t` | `gint_t` | matrix row/column strides and vector increments. |
| `doff_t` | `gint_t` | matrix diagonal offset: if _k_ < 0, diagonal begins at element (-_k_,0); otherwise diagonal begins at element (0,_k_). |
| `siz_t` | `guint_t` | a byte size or byte offset. |
### Floating-point types
| BLIS fp type | Type definition | Used to represent... |
|:------------------|:---------------------------------------|:----------------------------------|
| `float` | _N/A_ | single-precision real numbers. |
| `double` | _N/A_ | double-precision real numbers. |
| `scomplex` | `struct { float real; float imag; }` | single-precision complex numbers. |
| `dcomplex` | `struct { double real; double imag; }` | double-precision complex numbers. |
### Enumerated parameter types
| `num_t` | Semantic meaning: Matrix/vector operand... |
|:----------------|:---------------------------------------------------------|
| `BLIS_FLOAT` | contains single-precision real elements. |
| `BLIS_DOUBLE` | contains double-precision real elements. |
| `BLIS_SCOMPLEX` | contains single-precision complex elements. |
| `BLIS_DCOMPLEX` | contains double-precision complex elements. |
| `BLIS_INT` | contains integer elements of type `gint_t`. |
| `BLIS_CONSTANT` | contains polymorphic representation of a constant value. |
| `dom_t` | Semantic meaning: Matrix/vector operand... |
|:----------------|:-------------------------------------------|
| `BLIS_REAL` | contains real domain elements. |
| `BLIS_COMPLEX` | contains complex domain elements. |
| `prec_t` | Semantic meaning: Matrix/vector operand... |
|:-------------------|:-------------------------------------------|
| `BLIS_SINGLE_PREC` | contains single-precision elements. |
| `BLIS_DOUBLE_PREC` | contains double-precision elements. |
| `trans_t` | Semantic meaning: Matrix operand ... |
|:-------------------------|:------------------------------------------------|
| `BLIS_NO_TRANSPOSE` | will be used as given. |
| `BLIS_TRANSPOSE` | will be implicitly transposed. |
| `BLIS_CONJ_NO_TRANSPOSE` | will be implicitly conjugated. |
| `BLIS_CONJ_TRANSPOSE` | will be implicitly transposed _and_ conjugated. |
| `conj_t` | Semantic meaning: Matrix/vector operand... |
|:---------------------|:-------------------------------------------|
| `BLIS_NO_CONJUGATE` | will be used as given. |
| `BLIS_CONJUGATE` | will be implicitly conjugated. |
| `side_t` | Semantic meaning: Matrix operand... |
|:-------------|:------------------------------------|
| `BLIS_LEFT` | appears on the left. |
| `BLIS_RIGHT` | appears on the right. |
| `struc_t` | Semantic meaning: Matrix operand... |
|:------------------|:------------------------------------|
| `BLIS_GENERAL` | has no structure. |
| `BLIS_HERMITIAN` | has Hermitian structure. |
| `BLIS_SYMMETRIC` | has symmetric structure. |
| `BLIS_TRIANGULAR` | has triangular structure. |
| `uplo_t` | Semantic meaning: Matrix operand... |
|:-------------|:------------------------------------------------------------------|
| `BLIS_LOWER` | is stored in (and will be accessed only from) the lower triangle. |
| `BLIS_UPPER` | is stored in (and will be accessed only from) the upper triangle. |
| `BLIS_DENSE` | is stored as a full matrix (ie: in both triangles). |
| `diag_t` | Semantic meaning: Matrix operand ... |
|:--------------------|:---------------------------------------------------------------------------|
| `BLIS_NONUNIT_DIAG` | has a non-unit diagonal that should be explicitly read from. |
| `BLIS_UNIT_DIAG` | has a unit diagonal that should be implicitly assumed (and not read from). |
## Global scalar constants
BLIS defines a handful of scalar objects that conveniently represent various constant values for all defined numerical type values (`num_t`). The following table lists the constants defined by BLIS.
| BLIS constant `obj_t` name | Numerical values |
|:---------------------------|:-----------------|
| `BLIS_MINUS_TWO` | `-2.0` |
| `BLIS_MINUS_ONE` | `-1.0` |
| `BLIS_ZERO` | ` 0.0` |
| `BLIS_ONE` | ` 1.0` |
| `BLIS_TWO` | ` 2.0` |
These objects are polymorphic; each one contains a `float`, `double`, `scomplex`, `dcomplex`, and `gint_t` representation of the constant value in question. They can be used in place of any `obj_t*` operand in any object API function provided that the following criteria are met:
* The object parameter requires unit dimensions (1x1). (In other words, the function expects a scalar for the operand in question.)
* The object parameter is input-only. (In other words, the function is not trying to update the scalar.)
The correct representation is chosen by context, usually by inspecting the datatype of one of the other operands involved in an operation. For example, if we create and initialize objects `x` and `y` of `num_t` type `BLIS_DOUBLE`, the following call to `bli_axpyv()`
```c
bli_axpyv( &BLIS_TWO, &x, &y );
```
will use the `BLIS_DOUBLE` representation of `BLIS_TWO`.
## Basic vs expert interfaces
The functions listed in this document belong to the "basic" interface subset of the BLIS object API. There is a companion "expert" interface that mirrors the basic interface, except that it also contains two additional parameters that are only of interest to experts and library developers. The expert interfaces use the same name as the basic function names, except for an additional "_ex" suffix. For example, the basic interface for `gemm` is
```c
void bli_gemm
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c,
);
```
while the expert interface is:
```c
void bli_gemm_ex
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c,
cntx_t* cntx,
rntm_t* rntm
);
```
The expert interface contains two additional parameters: a `cntx_t*` and `rntm_t*`. Note that calling a function from the expert interface with the `cntx_t*` and `rntm_t*` arguments each set to `NULL` is equivalent to calling the corresponding basic interface. Specifically, a `NULL` value passed in for the `cntx_t*` results in a valid context being queried from BLIS, and a `NULL` value passed in for the `rntm_t*` results in the current global settings for multithreading to be used.
## Context type
In general, it is permissible to pass in `NULL` for a `cntx_t*` parameter when calling an expert interface such as `bli_gemm_ex()`. However, there are cases where `NULL` values are not accepted and may result in a segmentation fault. Specifically, the `cntx_t*` argument appears in the interfaces to the `gemm`, `trsm`, and `gemmtrsm` [level-3 microkernels](KernelsHowTo.md#level-3) along with all [level-1v](KernelsHowTo.md#level-1v) and [level-1f](KernelsHowTo.md#level-1f) kernels. There, as a general rule, a valid pointer must be passed in. Whenever a valid context is needed, the developer may query a default context from the global kernel structure (if a context is not already available in the current scope):
```c
cntx_t* bli_gks_query_cntx( void );
```
When BLIS is configured to target a configuration family (e.g. `intel64`, `x86_64`), `bli_gks_query_cntx()` will use `cpuid` or an equivalent heuristic to select and and return the appropriate context. When BLIS is configured to target a singleton sub-configuration (e.g. `haswell`, `skx`), `bli_gks_query_cntx()` will unconditionally return a pointer to the context appropriate for the targeted configuration.
## Runtime type
When calling one of the expert interfaces, a `rntm_t` (runtime) object can be used to convey a thread-local request for parallelism to the underlying implementation. Runtime objects are thread-safe by nature when they are declared statically as a stack variable (or allocated via `malloc()`), initialized, and then passed into the expert interface of interest.
Notice that runtime objects have no analogue in most BLAS libraries, where you are forced to specify parallelism at a global level (usually via environment variables).
For more information on using `rntm_t` objects, please read the [Multithreading](Multithreading.md) documentation, paying close attention to the section on [local setting of parallelism](Multithreading.md#locally-at-runtime).
## BLIS header file
All BLIS definitions and prototypes may be included in your C source file by including a single header file:
```c
#include "blis.h"
```
## Initialization and Cleanup
As of [9804adf](https://github.com/flame/blis/commit/9804adfd405056ec332bb8e13d68c7b52bd3a6c1), BLIS no longer requires explicit initialization and finalization at runtime. In other words, users do not need to call `bli_init()` before the application can make use of the library (and `bli_finalize()` after the application is finished with the library). Instead, all computational operations (and some non-computational functions) in BLIS will initialize the library on behalf of the user if it has not already been initialized. This change was made to simplify the user experience.
Application developers should keep in mind, however, that this new self-initialization regime implies the following: unless the library is *explicitly* finalized via `bli_finalize()`, it will, once initialized, remain initialized for the life of the application. This is likely not a problem in the vast majority of cases. However, a memory-constrained application that performs all of its DLA up-front, for example, may wish to explicitly finalize the library after BLIS is no longer needed in order to free up memory for other purposes.
Similarly, an expert user may call `bli_init()` manually in order to control when the overhead of library initialization is incurred, even though the library would have self-initialized.
The interfaces to `bli_init()` and `bli_finalize()` are quite simple; they require no arguments and return no values:
```c
void bli_init( void );
void bli_finalize( void );
```
# Object management
## Introduction
Before using the object API, you must first create some objects to encapsulate your vector or matrix data. We provide examples code for creating matrix objects in the [examples/oapi](https://github.com/flame/blis/tree/master/examples/oapi) directory of the BLIS source distribution. However, we will provide API documentation for the most common functions for creating and freeing objects in the next section.
Generally speaking, an object is created when an `obj_t` structure is initialized with valid properties describing the object as well as a valid data buffer (to hold the elements of the vector or matrix). The valid data buffer can be allocated automatically on your behalf at the same time that the other object fields are initialized, or "attached" in a second step after the object is initialized with preliminary values. The former is useful when using the object API at the setup stage of an application (and if `malloc()` is an acceptable method of allocating memory). Similarly, the latter is useful when interfacing BLIS into the middle of an application after the allocation has already taken place, or when some function other than `malloc()` is desired for allocating the buffer.
Only objects that were created with automatic allocation must be freed via BLIS object API. Objects that were initialized with attached buffers can be freed in whatever manner is appropriate, based on how the application originally allocated the memory in question.
## Object creation function reference
```c
void bli_obj_create
(
num_t dt,
dim_t m,
dim_t n,
inc_t rs,
inc_t cs,
obj_t* obj
);
```
Initialize an _m x n_ object `obj` and allocate sufficient storage to hold _mn_ elements whose storage type is specified by `dt` and with row and column strides `rs` and `cs`, respectively. This function allocates enough space to enforce alignment of leading dimensions, where the alignment factor is specific to the configuration being used, though the alignment factor is almost always equal to the size of the hardware's SIMD registers.
The address `obj` must reference valid memory--typically an `obj_t` declared statically or allocated dynamically via `malloc()`.
After an object created via `bli_obj_create()` is no longer needed, it should be deallocated via `bli_obj_free()`.
---
```c
void bli_obj_free
(
obj_t* obj
);
```
Deallocate (release) an object `obj` that was previously created, typically via `bli_obj_create()`.
---
```c
void bli_obj_create_without_buffer
(
num_t dt,
dim_t m,
dim_t n,
obj_t* obj
);
```
Partially initialize an _m x n_ object `obj` that will eventually contain elements whose storage type is specified by `dt`. This function does not result in any memory allocation. Before `obj` can be used, the object must be fully initialized by attaching a buffer via `bli_obj_attach_buffer()`. This function is useful when the user wishes to encapsulate existing buffers into one or more `obj_t` objects.
An object (partially) initialized via this function should generally not be passed to `bli_obj_free()` even after a buffer is attached to it via `bli_obj_attach_buffer()`, unless the user wishes to pass that buffer into `free()`.
---
```c
void bli_obj_attach_buffer
(
void* p,
inc_t rs,
inc_t cs,
inc_t is,
obj_t* obj
);
```
Given a partially initialized object (i.e., one that has already been passed to `bli_obj_create_without_buffer()`), attach the buffer pointed to by `p` to the object referenced by `obj` and initialize `obj` as containing elements with row and column strides `rs` and `cs`, respectively. The function also initializes the imaginary stride as `is`, which is experimental and not consistently used by all parts of BLIS.
---
```c
void bli_obj_create_with_attached_buffer
(
num_t dt,
dim_t m,
dim_t n,
void* p,
inc_t rs,
inc_t cs,
obj_t* obj
);
```
Initialize an _m x n_ object `obj` as containing _mn_ elements whose storage type is specified by `dt` and with row and column strides `rs` and `cs`, respectively. The function does not allocate any memory and instead attaches the buffer pointed to by `p`. Note that calling this function is effectively equivalent to calling
```c
bli_obj_create_without_buffer( dt, m, n, obj );
bli_obj_attach_buffer( p, rs, cs, 1, obj );
```
Objects initialized via this function should generally not be passed to `bli_obj_free()`, unless the user wishes to pass `p` into `free()`.
---
```c
void bli_obj_alloc_buffer
(
inc_t rs,
inc_t cs,
inc_t is,
obj_t* obj
);
```
Given a partially initialized _m x n_ object, allocate and attach a buffer large enough to contain _mn_ elements with the row and column strides `rs` and `cs`, respectively. This function allocates enough space to enforce alignment of leading dimensions, where the alignment factor is specific to the configuration being used, though the alignment factor is almost always equal to the size of the hardware's SIMD registers.
Note that calling `bli_obj_create()` is effectively equivalent to calling
```c
bli_obj_create_without_buffer( dt, m, n, obj );
bli_obj_alloc_buffer( rs, cs, 1, obj );
```
Very few users will likely have a need to call this function. We provide documentation for it mostly so that others can manually access the alignment features of `bli_obj_create()` without also needing to initialize an `obj_t`.
---
```c
void bli_obj_create_1x1
(
num_t dt,
obj_t* obj
);
```
Initialize a _1 x 1_ object `obj` and allocate sufficient storage to hold one element whose storage type is specified by `dt`.
The address `obj` must reference valid memory--typically an `obj_t` declared statically or allocated dynamically via `malloc()`.
This function is useful any time the user wishes to create a scalar object with an allocated buffer.
Note that calling `bli_obj_create_1x1()` is effectively equivalent to calling
```c
bli_obj_create_without_buffer( dt, 1, 1, obj );
bli_obj_alloc_buffer( 1, 1, 1, obj );
```
After an object created via `bli_obj_create_1x1()` is no longer needed, it should be deallocated via `bli_obj_free()`.
---
```c
void bli_obj_create_1x1_with_attached_buffer
(
num_t dt,
void* p,
obj_t* obj
);
```
Initialize a _1 x 1_ object `obj` as containing one element whose storage type is specified by `dt`. The function does not allocate any memory and instead attaches the buffer pointed to by `p`. Note that calling this function is effectively equivalent to calling
```c
bli_obj_create_without_buffer( dt, 1, 1, obj );
bli_obj_attach_buffer( p, 1, 1, 1, obj );
```
Objects initialized via this function should generally not be passed to `bli_obj_free()`, unless the user wishes to pass `p` into `free()`.
---
```c
void bli_obj_create_conf_to
(
obj_t* s,
obj_t* d
);
```
Initialize an object `d` with dimensions conformal to those of an existing object `s`. Object `d` is initialized with the same row and column strides as those of `s`. However, the structure, uplo, conjugation, and transposition properties of `s` are **not** inherited by `d`.
On entry, object `s` must be fully initialized and the address `d` must reference valid memory--typically an `obj_t` declared statically or allocated dynamically via `malloc()`.
Note that calling this function is effectively equivalent to calling
```c
num_t dt = bli_obj_dt( s );
dim_t m = bli_obj_length( s );
dim_t n = bli_obj_width( s );
inc_t rs = bli_obj_row_stride( s );
inc_t cs = bli_obj_col_stride( s );
bli_obj_create( dt, m, n, rs, cs, d );
```
After an object created via `bli_obj_create_conf_to()` is no longer needed, it should be deallocated via `bli_obj_free()`.
---
```c
void bli_obj_scalar_init_detached
(
num_t dt,
obj_t* obj
);
```
Initialize a _1 x 1_ object `obj` using internal storage sufficient to hold one element whose storage type is specified by `dt`. (Internal storage is present within every `obj_t` and is capable of holding on element of any supported type.) This function is similar to `bli_obj_create_1x1()`, except that the object does not trigger any dynamic memory allocation.
Objects initialized via this function should **never** be passed to `bli_obj_free()`.
## Object accessor function reference
Notes for interpreting function descriptions:
* Object accessor functions allow the caller to query certain properties of objects.
* These functions are only guaranteed to return meaningful values when called upon objects that have been fully initialized/created.
* Many specialized functions are omitted from this section for brevity. For a full list of accessor functions, please see [frame/include/bli_obj_macro_defs.h](https://github.com/flame/blis/tree/master/frame/include/bli_obj_macro_defs.h), though most users will most likely not need methods beyond those documented below.
---
```c
num_t bli_obj_dt( obj_t* obj );
```
Return the storage datatype property of `obj`.
---
```c
dom_t bli_obj_domain( obj_t* obj );
```
Return the domain component of the storage datatype property of `obj`.
---
```c
prec_t bli_obj_prec( obj_t* obj );
```
Return the precision component of the storage datatype property of `obj`.
---
```c
trans_t bli_obj_conjtrans_status( obj_t* obj );
```
Return the `trans_t` property of `obj`, which may indicate transposition, conjugation, both, or neither. Thus, possible return values are `BLIS_NO_TRANSPOSE`, `BLIS_CONJ_NO_TRANSPOSE`, `BLIS_TRANSPOSE`, or `BLIS_CONJ_TRANSPOSE`.
---
```c
trans_t bli_obj_onlytrans_status( obj_t* obj );
```
Return the transposition component of the `trans_t` property of `obj`, which may indicate transposition or no transposition.
Thus, possible return values are `BLIS_NO_TRANSPOSE` or `BLIS_TRANSPOSE`.
---
```c
conj_t bli_obj_conj_status( obj_t* obj );
```
Return the conjugation component of the `trans_t` property of `obj`, which may indicate conjugation or no conjugation.
Thus, possible return values are `BLIS_NO_CONJUGATE` or `BLIS_CONJUGATE`.
---
```c
struc_t bli_obj_struc( obj_t* obj );
```
Return the structure property of `obj`.
---
```c
uplo_t bli_obj_uplo( obj_t* obj );
```
Return the uplo (i.e., storage) property of `obj`.
---
```c
diag_t bli_obj_diag( obj_t* obj );
```
Return the diagonal property of `obj`.
---
```c
doff_t bli_obj_diag_offset( obj_t* obj );
```
Return the diagonal offset of `obj`. Note that the diagonal offset will be negative, `-i`, if the diagonal begins at element `(-i,0)` and positive `j` if the diagonal begins at element `(0,j)`.
---
```c
dim_t bli_obj_length( obj_t* obj );
```
Return the number of rows (or _m_ dimension) of `obj`. This value is the _m_ dimension **before** taking into account the transposition property as indicated by `bli_obj_onlytrans_status()` or `bli_obj_conjtrans_status()`.
---
```c
dim_t bli_obj_width( obj_t* obj );
```
Return the number of columns (or _n_ dimension) of `obj`. This value is the _n_ dimension **before** taking into account the transposition property as indicated by `bli_obj_onlytrans_status()` or `bli_obj_conjtrans_status()`.
---
```c
dim_t bli_obj_length_after_trans( obj_t* obj );
```
Return the number of rows (or _m_ dimension) of `obj` after taking into account the transposition property as indicated by `bli_obj_onlytrans_status()` or `bli_obj_conjtrans_status()`.
---
```c
dim_t bli_obj_width_after_trans( obj_t* obj );
```
Return the number of columns (or _n_ dimension) of `obj` after taking into account the transposition property as indicated by `bli_obj_onlytrans_status()` or `bli_obj_conjtrans_status()`.
---
```c
inc_t bli_obj_row_stride( obj_t* obj );
```
Return the row stride property of `obj`. When storing by columns, the row stride is 1. When storing by rows, the row stride is also sometimes called the _leading dimension_.
---
```c
inc_t bli_obj_col_stride( obj_t* obj );
```
Return the column stride property of `obj`. When storing by rows, the column stride is 1. When storing by columns, the column stride is also sometimes called the _leading dimension_.
---
```c
dim_t bli_obj_vector_dim( obj_t* obj );
```
Return the number of elements in a vector object `obj`.
This function assumes that at least one dimension of `obj` is unit, and that it therefore represents a vector.
---
```c
inc_t bli_obj_vector_inc( obj_t* obj );
```
Return the storage increment of a vector object `obj`.
This function assumes that at least one dimension of `obj` is unit, and that it therefore represents a vector.
---
```c
void* bli_obj_buffer( obj_t* obj );
```
Return the address to the data buffer associated with object `obj`.
**Note**: The address returned by this buffer will not take into account any subpartitioning. However, this will not be a problem for most casual users.
---
```c
siz_t bli_obj_elem_size( obj_t* obj );
```
Return the size, in bytes, of the storage datatype as indicated by `bli_obj_dt()`.
## Object mutator function reference
Notes for interpreting function descriptions:
* Object mutator functions allow the caller to modify certain properties of objects.
* The user should be extra careful about modifying properties after objects are created. For typical use of these functions, please study the example code provided in [examples/oapi](https://github.com/flame/blis/tree/master/examples/oapi).
* The list of mutators below is much shorter than the list of accessor functions provided in the previous section. Most mutator functions should *not* be called by users (unless you know what you are doing). For a full list of mutator functions, please see [frame/include/bli_obj_macro_defs.h](https://github.com/flame/blis/tree/master/frame/include/bli_obj_macro_defs.h), though most users will most likely not need methods beyond those documented below.
---
```c
void bli_obj_set_conjtrans( trans_t trans, obj_t* obj );
```
Set both conjugation and transposition properties of `obj` using the corresponding components of `trans`.
---
```c
void bli_obj_set_onlytrans( trans_t trans, obj_t* obj );
```
Set the transposition property of `obj` using the transposition component of `trans`. Leaves the conjugation property of `obj` unchanged.
---
```c
void bli_obj_set_conj( conj_t conj, obj_t* obj );
```
Set the conjugation property of `obj` using `conj`. Leaves the transposition property of `obj` unchanged.
---
```c
void bli_obj_apply_trans( trans_t trans, obj_t* obj );
```
Apply `trans` to the transposition property of `obj`. For example, applying `BLIS_TRANSPOSE` will toggle the transposition property of `obj` but leave the conjugation property unchanged; applying `BLIS_CONJ_TRANSPOSE` will toggle both the conjugation and transposition properties of `obj`.
---
```c
void bli_obj_apply_conj( conj_t conj, obj_t* obj );
```
Apply `conj` to the conjugation property of `obj`. Specifically, applying `BLIS_CONJUGATE` will toggle the conjugation property of `obj`; applying `BLIS_NO_CONJUGATE` will have no effect. Leaves the transposition property of `obj` unchanged.
---
```c
void bli_obj_set_struc( struc_t struc, obj_t* obj );
```
Set the structure property of `obj` to `struc`.
---
```c
void bli_obj_set_uplo( uplo_t uplo, obj_t* obj );
```
Set the uplo (i.e., storage) property of `obj` to `uplo`.
---
```c
void bli_obj_set_diag( diag_t diag, obj_t* obj );
```
Set the diagonal property of `obj` to `diag`.
---
```c
void bli_obj_set_diag_offset( doff_t doff, obj_t* obj );
```
Set the diagonal offset property of `obj` to `doff`. Note that `doff_t` may be typecast from any signed integer.
---
## Other object function reference
---
```c
void bli_obj_induce_trans( obj_t* obj );
```
Modify the properties of `obj` to induce a logical transposition. This function operates without regard to whether the transposition property is already set. Therefore, depending on the circumstance, the caller may or may not wish to clear the transposition property after calling this function.
---
```c
void bli_obj_alias_to( obj_t* a, obj_t* b );
```
Initialize `b` to be a shallow copy, or alias, of `a`. For most people's purposes, this is equivalent to
```
b = a;
```
However, there is at least one field (one that only developers should be concerned with) that is not copied.
---
```c
void bli_obj_real_part( obj_t* c, obj_t* r );
```
Initialize `r` to be a modified shallow copy of `c` that refers only to the real part of `c`.
---
```c
void bli_obj_imag_part( obj_t* c, obj_t* i );
```
Initialize `i` to be a modified shallow copy of `c` that refers only to the imaginary part of `c`.
# Computational function reference
Notes for interpreting function descriptions:
* `conj?(X)` and `trans?(X)` should be interpreted as predicates that capture the operand `X` with that object's `conj_t` or `trans_t` property applied. For example:
* `conj?(x)` refers to a vector `x` that is either conjugated or used as given.
* `trans?(A)` refers to a matrix `A` that is either transposed, conjugated _and_ transposed, conjugated only, or used as given.
* Any operand marked with `conj()` is unconditionally conjugated.
* Any operand marked with `^T` is unconditionally transposed. Similarly, any operand that is marked with `^H` is unconditionally conjugate-transposed.
* All occurrences of `alpha`, `beta`, and `rho` parameters are scalars.
* In general, unless otherwise noted, all object parameters must be stored using the same `num_t` datatype. In a few cases, one of the object parameters must be stored in the real projection of one of the other objects' types. (The real projection of a `num_t` datatype is the equivalent datatype in the real domain. So `BLIS_DOUBLE` is the real projection of `BLIS_DCOMPLEX`. `BLIS_DOUBLE` is also the real projection of itself.)
* Many object API entries list the object properties that are honored/observed by the operation. For example, for `bli_gemv()`, the observed object properties are `trans?(A)` and `conj?(x)`. The former means that matrix `A` may be (optionally) marked for conjugation and/or tranaposition while the latter means that vector `x` may be (optionally) marked for conjugation. A function may also list `diagoff(A)` as an observe property, which means that it will accept general diagonal offsets. Similarly, `diag(A)` refers to recognizing the unit/non-unit structure of the diagonal and and `uplo(A)` refers to reading/updating only the stored triangle/trapezoid/region of `A`.
---
## Level-1v operations
Level-1v operations perform various level-1 BLAS-like operations on vectors (hence the _v_).
**Note**: Most level-1v operations have a corresponding level-1v kernel through which it is primarily implemented.
---
#### addv
```c
void bli_addv
(
obj_t* x,
obj_t* y,
);
```
Perform
```
y := y + conj?(x)
```
where `x` and `y` are vectors of length _n_.
Observed object properties: `conj?(x)`.
---
#### amaxv
```c
void bli_amaxv
(
obj_t* x,
obj_t* index
);
```
Given a vector of length _n_, return the zero-based index of the element of vector `x` that contains the largest absolute value (or, in the complex domain, the largest complex modulus). The object `index` must be created of type `BLIS_INT`.
If `NaN` is encountered, it is treated as if it were a valid value that was smaller than any other value in the vector. If more than one element contains the same maximum value, the index of the latter element is returned via `index`.
Observed object properties: none.
**Note:** This function attempts to mimic the algorithm for finding the element with the maximum absolute value in the netlib BLAS routines `i?amax()`.
---
#### axpyv
```c
void bli_axpyv
(
obj_t* alpha,
obj_t* x,
obj_t* y
);
```
Perform
```
y := y + conj?(alpha) * conj?(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` is a scalar.
Observed object properties: `conj?(alpha)`, `conj?(x)`.
---
#### axpbyv
```
void bli_axpbyv
(
obj_t* alpha,
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * conj?(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` and `beta` are scalars.
Observed object properties: `conj?(alpha)`, `conj?(x)`.
---
#### copyv
```c
void bli_copyv
(
obj_t* x,
obj_t* y
);
```
Perform
```
y := conj?(x)
```
where `x` and `y` are vectors of length _n_.
Observed object properties: `conj?(x)`.
---
#### dotv
```c
void bli_dotv
(
obj_t* x,
obj_t* y,
obj_t* rho
);
```
Perform
```
rho := conj?(x)^T * conj?(y)
```
where `x` and `y` are vectors of length _n_, and `rho` is a scalar.
Observed object properties: `conj?(x)`, `conj?(y)`.
---
#### dotxv
```c
void bli_dotxv
(
obj_t* alpha,
obj_t* x,
obj_t* y,
obj_t* beta,
obj_t* rho
);
```
Perform
```
rho := conj?(beta) * rho + conj?(alpha) * conj?(x)^T * conj?(y)
```
where `x` and `y` are vectors of length _n_, and `alpha`, `beta`, and `rho` are scalars.
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `conj?(x)`, `conj?(y)`.
---
#### invertv
```c
void bli_invertv
(
obj_t* x
);
```
Invert all elements of an _n_-length vector `x`.
---
#### invscalv
```c
void bli_invscalv
(
obj_t* alpha,
obj_t* x
);
```
Perform
```
x := ( 1.0 / conj?(alpha) ) * x
```
where `x` is a vector of length _n_, and `alpha` is a scalar.
Observed object properties: `conj?(alpha)`.
---
#### scalv
```c
void bli_scalv
(
obj_t* alpha,
obj_t* x
);
```
Perform
```
x := conj?(alpha) * x
```
where `x` is a vector of length _n_, and `alpha` is a scalar.
Observed object properties: `conj?(alpha)`.
---
#### scal2v
```c
void bli_scal2v
(
obj_t* alpha,
obj_t* x,
obj_t* y
);
```
Perform
```
y := conj?(alpha) * conj?(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` is a scalar.
Observed object properties: `conj?(alpha)`, `conj?(x)`.
---
#### setv
```c
void bli_setv
(
obj_t* alpha,
obj_t* x
);
```
Perform
```
x := conj?(alpha)
```
That is, set all elements of an _n_-length vector `x` to scalar `conj?(alpha)`.
Observed object properties: `conj?(alpha)`.
---
#### setrv
```c
void bli_setrv
(
obj_t* alpha,
obj_t* x
);
```
Perform
```
real(x) := real(alpha)
```
That is, given an _n_-length vector `x`, set all elements' real components to the real component of scalar `alpha`. (If `alpha` is complex, the imaginary component is ignored.)
If `x` is real, this operation is equivalent to performing `setv` on `x` with the real component of scalar `alpha`.
**Note**: This operation is provided for convenience as an object wrapper to `setv`, and thus it has no analogue in the [BLIS typed API](BLISTypedAPI).
---
#### setiv
```c
void bli_setiv
(
obj_t* alpha,
obj_t* x
);
```
Perform
```
imag(x) := real(alpha)
```
That is, given an _n_-length vector `x`, set all elements' imaginary components to the real component of scalar `alpha`. (If `alpha` is complex, the imaginary component is ignored.)
If `x` is real, this operation is equivalent to a no-op.
**Note**: This operation is provided for convenience as an object wrapper to `setv`, and thus it has no analogue in the [BLIS typed API](BLISTypedAPI).
---
#### subv
```c
void bli_subv
(
obj_t* x,
obj_t* y
);
```
Perform
```
y := y - conj?(x)
```
where `x` and `y` are vectors of length _n_.
Observed object properties: `conj?(x)`.
---
#### swapv
```c
void bli_swapv
(
obj_t* x,
obj_t* y
);
```
Swap corresponding elements of two _n_-length vectors `x` and `y`.
---
#### xpbyv
```
void bli_xpbyv
(
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(x)
```
where `x` and `y` are vectors of length _n_, and `beta` is a scalar.
Observed object properties: `conj?(beta)`, `conj?(x)`.
---
## Level-1d operations
Level-1d operations perform various level-1 BLAS-like operations on matrix diagonals (hence the _d_).
These operations are similar to their level-1m counterparts, except they only read and update matrix diagonals and therefore ignore the `uplo` property of their applicable input operands. Please see the descriptions for the corresponding level-1m operation for a description of the arguments.
---
#### addd
```c
void bli_addd
(
obj_t* a,
obj_t* b
);
```
Observed object properties: `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
#### axpyd
```c
void bli_axpyd
(
obj_t* alpha,
obj_t* a,
obj_t* b
);
```
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
#### copyd
```c
void bli_copyd
(
obj_t* a,
obj_t* b
);
```
Observed object properties: `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
#### invertd
```c
void bli_invertd
(
obj_t* a
);
```
Observed object properties: `diagoff(A)`.
---
#### invscald
```c
void bli_invscald
(
obj_t* alpha,
obj_t* a
);
```
Observed object properties: `conj?(alpha)`, `diagoff(A)`.
---
#### scald
```c
void bli_scald
(
obj_t* alpha,
obj_t* a
);
```
Observed object properties: `conj?(alpha)`, `diagoff(A)`.
---
#### scal2d
```c
void bli_scal2d
(
obj_t* alpha,
obj_t* a,
obj_t* b
);
```
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
#### setd
```c
void bli_setd
(
obj_t* alpha,
obj_t* a
);
```
Observed object properties: `conj?(alpha)`, `diagoff(A)`.
---
#### setid
```c
void bli_setid
(
obj_t* alpha,
obj_t* a
);
```
Set the imaginary components of every element along the diagonal of `a`
to a scalar `alpha`.
Note that the datatype of `alpha` must be the real projection of the datatype
of `a`.
Observed object properties: `diagoff(A)`.
---
#### shiftd
```c
void bli_shiftd
(
obj_t* alpha,
obj_t* a
);
```
Add a constant value `alpha` to every element along the diagonal of `a`.
Observed object properties: `diagoff(A)`.
---
#### subd
```c
void bli_subd
(
obj_t* a,
obj_t* b
);
```
Observed object properties: `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
#### xpbyd
```c
void bli_xpbyd
(
obj_t* a,
obj_t* beta,
obj_t* b
);
```
Observed object properties: `conj?(beta)`, `diagoff(A)`, `diag(A)`, `trans?(A)`.
---
## Level-1m operations
Level-1m operations perform various level-1 BLAS-like operations on matrices (hence the _m_).
---
#### addm
```c
void bli_addm
(
obj_t* a,
obj_t* b
);
```
Perform
```
B := B + trans?(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`.
---
#### axpym
```c
void bli_axpym
(
obj_t* alpha,
obj_t* a,
obj_t* b
);
```
Perform
```
B := B + conj?(alpha) * trans?(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`.
---
#### copym
```c
void bli_copym
(
obj_t* a,
obj_t* b
);
```
Perform
```
B := trans?(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`.
---
#### invscalm
```c
void bli_invscalm
(
obj_t* alpha,
obj_t* a
);
```
Perform
```
A := ( 1.0 / conj?(alpha) ) * A
```
where `A` is an _m x n_ matrix stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset. If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be updated.
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `uplo(A)`.
---
#### scalm
```c
void bli_scalm
(
obj_t* alpha,
obj_t* a
);
```
Perform
```
A := conj?(alpha) * A
```
where `A` is an _m x n_ matrix stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset. If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be updated.
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `uplo(A)`.
---
#### scal2m
```c
void bli_scal2m
(
obj_t* a,
obj_t* b
);
```
Perform
```
B := conj?(alpha) * trans?(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`.
---
#### setm
```c
void bli_setm
(
obj_t* alpha,
obj_t* a
);
```
Perform
```
A := conj?(alpha)
```
That is, set all elements of `A` to scalar `conj?(alpha)`, where `A` is an _m x n_ matrix stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset. If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be updated.
Observed object properties: `conj?(alpha)`, `diagoff(A)`, `diag(A)`, `uplo(A)`.
---
#### setrm
```c
void bli_setrm
(
obj_t* alpha,
obj_t* a
);
```
Perform
```
real(A) := real(alpha)
```
That is, given an _m x n_ matrix `A`, set all elements' real components to the real component of scalar `alpha`. (If `alpha` is complex, the imaginary component is ignored.)
If `A` is real, this operation is equivalent to performing `setm` on `A` with the real component of scalar `alpha`.
**Note**: This operation is provided for convenience as an object wrapper to `setm`, and thus it has no analogue in the [BLIS typed API](BLISTypedAPI).
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`.
---
#### setim
```c
void bli_setim
(
obj_t* alpha,
obj_t* a
);
```
Perform
```
imag(A) := real(alpha)
```
That is, given an _m x n_ matrix `A`, set all elements' imaginary components to the real component of scalar `alpha`. (If `alpha` is complex, the imaginary component is ignored.)
If `A` is real, this operation is equivalent to a no-op.
**Note**: This operation is provided for convenience as an object wrapper to `setm`, and thus it has no analogue in the [BLIS typed API](BLISTypedAPI).
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`.
---
#### subm
```c
void bli_subm
(
obj_t* a,
obj_t* b
);
```
Perform
```
B := B - trans?(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `uplo(A)` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`.
---
## Level-1f operations
Level-1f operations implement various fused combinations of level-1 operations (hence the _f_).
**Note**: Each level-1f operation has a corresponding level-1f kernel through which it is primarily implemented.
Level-1f kernels are employed when optimizing level-2 operations.
---
#### axpy2v
```c
void bli_axpy2v
(
obj_t* alphax,
obj_t* alphay,
obj_t* x,
obj_t* y,
obj_t* z
);
```
Perform
```
y := y + conj?(alphax) * conj?(x) + conj?(alphay) * conj?(y)
```
where `x`, `y`, and `z` are vectors of length _m_. The kernel, if optimized, is implemented as a fused pair of calls to [axpyv](BLISObjectAPI.md#axpyv).
Observed object properties: `conj?(alphax)`, `conj?(x)`, `conj?(alphay)`, `conj?(y)`.
---
#### dotaxpyv
```c
void bli_dotaxpyv
(
obj_t* alpha,
obj_t* x,
obj_t* y,
obj_t* rho,
obj_t* z
);
```
Perform
```
rho := conj?(x)^T * conj?(y)
y := y + conj?(alpha) * conj?(x)
```
where `x`, `y`, and `z` are vectors of length _m_ and `alpha` and `rho` are scalars. The kernel, if optimized, is implemented as a fusion of calls to [dotv](BLISObjectAPI.md#dotv) and [axpyv](BLISObjectAPI.md#axpyv).
Observed object properties: `conj?(x)`, `conj?(y)`, `conj?(alpha)`.
---
#### axpyf
```c
void bli_axpyf
(
obj_t* alpha,
obj_t* a,
obj_t* x,
obj_t* y
);
```
Perform
```
y := y + alpha * conja(A) * conjx(x)
```
where `A` is an _m x b_ matrix, and `x` and `y` are vectors. The kernel, if optimized, is implemented as a fused series of calls to [axpyv](BLISObjectAPI.md#axpyv) where _b_ is less than or equal to an implementation-dependent fusing factor specific to `axpyf`.
Observed object properties: `conj?(alpha)`, `conj?(A)`, `conj?(x)`.
---
#### dotxf
```c
void bli_dotxf
(
obj_t* alpha,
obj_t* a,
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * conj?(A)^T * conj?(x)
```
where `A` is an _m x b_ matrix, and `x` and `y` are vectors. The kernel, if optimized, is implemented as a fused series of calls to [dotxv](BLISObjectAPI.md#dotxv) where _b_ is less than or equal to an implementation-dependent fusing factor specific to `dotxf`.
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `conj?(A)`, `conj?(x)`.
---
#### dotxaxpyf
```c
void bli_dotxaxpyf
(
obj_t* alpha,
obj_t* a,
obj_t* w,
obj_t* x,
obj_t* beta,
obj_t* y,
obj_t* z
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * conj?(A)^T * conj?(w)
z := z + conj?(alpha) * conj?(A) * conj?(x)
```
where `A` is an _m x b_ matrix, `w` and `z` are vectors of length _m_, `x` and `y` are vectors of length `b`, and `alpha` and `beta` are scalars. The kernel, if optimized, is implemented as a fusion of calls to [dotxf](BLISObjectAPI.md#dotxf) and [axpyf](BLISObjectAPI.md#axpyf).
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `conj?(A)`, `conj?(w)`, `conj?(x)`.
## Level-2 operations
Level-2 operations perform various level-2 BLAS-like operations.
---
#### gemv
```c
void bli_gemv
(
obj_t* alpha,
obj_t* a,
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * trans?(A) * conj?(x)
```
where `trans?(A)` is an _m x n_ matrix, and `x` and `y` are vectors.
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `trans?(A)`, `conj?(x)`.
---
#### ger
```c
void bli_ger
(
obj_t* alpha,
obj_t* x,
obj_t* y,
obj_t* a
);
```
Perform
```
A := A + conj?(alpha) * conj?(x) * conj?(y)^T
```
where `A` is an _m x n_ matrix, and `x` and `y` are vectors of length _m_ and _n_, respectively.
Observed object properties: `conj?(alpha)`, `conj?(x)`, `conj?(y)`.
---
#### hemv
```c
void bli_hemv
(
obj_t* alpha,
obj_t* a,
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * conj?(A) * conj?(x)
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uplo(A)`, and `x` and `y` are vectors of length _m_.
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `conj?(A)`, `uplo(A)`, `conj?(x)`.
---
#### her
```c
void bli_her
(
obj_t* alpha,
obj_t* x,
obj_t* a
);
```
Perform
```
A := A + conj?(alpha) * conj?(x) * conj?(x)^H
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uplo(A)`, and `x` is a vector of length _m_.
Observed object properties: `conj?(alpha)`, `uplo(A)`, `conj?(x)`.
**Note:** The floating-point (`num_t`) type of `alpha` is always the real projection of the floating-point types of `x` and `A`.
---
#### her2
```c
void bli_her2
(
obj_t* alpha,
obj_t* x,
obj_t* y,
obj_t* a
);
```
Perform
```
A := A + alpha * conj?(x) * conj?(y)^H + conj(alpha) * conj?(y) * conj?(x)^H
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uplo(A)`, and `x` and `y` are vectors of length _m_.
Observed object properties: `uplo(A)`, `conj?(x)`, `conj?(y)`.
---
#### symv
```c
void bli_symv
(
obj_t* alpha,
obj_t* a,
obj_t* x,
obj_t* beta,
obj_t* y
);
```
Perform
```
y := conj?(beta) * y + conj?(alpha) * conj?(A) * conj?(x)
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uplo(A)`, and `x` and `y` are vectors of length _m_.
Observed object properties: `conj?(alpha)`, `conj?(beta)`, `conj?(A)`, `uplo(A)`, `conj?(x)`.
---
#### syr
```c
void bli_syr
(
obj_t* alpha,
obj_t* x,
obj_t* a
);
```
Perform
```
A := A + conj?(alpha) * conj?(x) * conj?(x)^T
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa`, and `x` is a vector of length _m_.
Observed object properties: `conj?(alpha)`, `conj?(x)`.
---
#### syr2
```c
void bli_syr2
(
obj_t* alpha,
obj_t* x,
obj_t* y,
obj_t* a
);
```
Perform
```
A := A + alpha * conj?(x) * conj?(y)^T + conj(alpha) * conj?(y) * conj?(x)^T
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uplo(A)`, and `x` and `y` are vectors of length _m_.
Observed object properties: `uplo(A)`, `conj?(x)`, `conj?(y)`.
---
#### trmv
```c
void bli_trmv
(
obj_t* alpha,
obj_t* a,
obj_t* x
);
```
Perform
```
x := conj?(alpha) * transa(A) * x
```
where `A` is an _m x m_ triangular matrix stored in the lower or upper triangle as specified by `uplo(A)` with unit/non-unit nature specified by `diag(A)`, and `x` is a vector of length _m_.
Observed object properties: `conj?(alpha)`, `uplo(A)`, `trans?(A)`, `diag(A)`.
---
#### trsv
```c
void bli_trsv
(
obj_t* alpha,
obj_t* a,
obj_t* y
);
```
Solve the linear system
```
transa(A) * x = alpha * y
```
where `A` is an _m x m_ triangular matrix stored in the lower or upper triangle as specified by `uplo(A)` with unit/non-unit nature specified by `diag(A)`, and `x` and `y` are vectors of length _m_. The right-hand side vector operand `y` is overwritten with the solution vector `x`.
Observed object properties: `conj?(alpha)`, `uplo(A)`, `trans?(A)`, `diag(A)`.
---
## Level-3 operations
Level-3 operations perform various level-3 BLAS-like operations.
**Note**: Each All level-3 operations are implemented through a handful of level-3 microkernels. Please see the [Kernels Guide](KernelsHowTo.md) for more details.
---
#### gemm
```c
void bli_gemm
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(B)
```
where `C` is an _m x n_ matrix, `trans?(A)` is an _m x k_ matrix, and `trans?(B)` is a _k x n_ matrix.
Observed object properties: `trans?(A)`, `trans?(B)`.
---
#### gemmt
```c
void bli_gemmt
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(B)
```
where `C` is an _m x m_ matrix, `trans?(A)` is an _m x k_ matrix, and `trans?(B)` is a _k x m_ matrix. This operation is similar to `bli_gemm()` except that it only updates the lower or upper triangle of `C` as specified by `uplo(C)`.
Observed object properties: `trans?(A)`, `trans?(B)`, `uplo(C)`.
---
#### hemm
```c
void bli_hemm
(
side_t sidea,
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * conj?(A) * trans?(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * trans?(B) * conj?(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `B` are _m x n_ matrices and `A` is a Hermitian matrix stored in the lower or upper triangle as specified by `uplo(A)`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
Observed object properties: `uplo(A)`, `conj?(A)`, `trans?(B)`.
---
#### herk
```c
void bli_herk
(
obj_t* alpha,
obj_t* a,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(A)^H
```
where `C` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uplo(C)` and `trans?(A)` is an _m x k_ matrix.
Observed object properties: `trans?(A)`, `uplo(C)`.
**Note:** The floating-point (`num_t`) types of `alpha` and `beta` are always the real projection of the floating-point types of `A` and `C`.
---
#### her2k
```c
void bli_her2k
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(B)^H + conj(alpha) * trans?(B) * trans?(A)^H
```
where `C` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uplo(C)` and `trans?(A)` and `trans?(B)` are _m x k_ matrices.
Observed object properties: `trans?(A)`, `trans?(B)`, `uplo(C)`.
**Note:** The floating-point (`num_t`) type of `beta` is always the real projection of the floating-point types of `A` and `C`.
---
#### symm
```c
void bli_symm
(
side_t sidea,
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * conj?(A) * trans?(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * trans?(B) * conj?(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `B` are _m x n_ matrices and `A` is a symmetric matrix stored in the lower or upper triangle as specified by `uplo(A)`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
Observed object properties: `uplo(A)`, `conj?(A)`, `trans?(B)`.
---
#### syrk
```c
void bli_syrk
(
obj_t* alpha,
obj_t* a,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(A)^T
```
where `C` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uplo(A)` and `trans?(A)` is an _m x k_ matrix.
Observed object properties: `trans?(A)`, `uplo(C)`.
---
#### syr2k
```c
void bli_syr2k
(
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(B)^T + alpha * trans?(B) * trans?(A)^T
```
where `C` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uplo(A)` and `trans?(A)` and `trans?(B)` are _m x k_ matrices.
Observed object properties: `trans?(A)`, `trans?(B)`, `uplo(C)`.
---
#### trmm
```c
void bli_trmm
(
side_t sidea,
obj_t* alpha,
obj_t* a,
obj_t* b
);
```
Perform
```
B := alpha * transa(A) * B
```
if `sidea` is `BLIS_LEFT`, or
```
B := alpha * B * transa(A)
```
if `sidea` is `BLIS_RIGHT`, where `B` is an _m x n_ matrix and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uplo(A)` with unit/non-unit nature specified by `diag(A)`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
Observed object properties: `uplo(A)`, `trans?(A)`, `diag(A)`.
---
#### trmm3
```c
void bli_trmm3
(
side_t sidea,
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c
);
```
Perform
```
C := beta * C + alpha * trans?(A) * trans?(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * trans?(B) * trans?(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `trans?(B)` are _m x n_ matrices and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uplo(A)` with unit/non-unit nature specified by `diag(A)`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
Observed object properties: `uplo(A)`, `trans?(A)`, `diag(A)`, `trans?(B)`.
---
#### trsm
```c
void bli_trsm
(
side_t sidea,
obj_t* alpha,
obj_t* a,
obj_t* b
);
```
Solve the linear system with multiple right-hand sides
```
transa(A) * X = alpha * B
```
if `sidea` is `BLIS_LEFT`, or
```
X * transa(A) = alpha * B
```
if `sidea` is `BLIS_RIGHT`, where `X` and `B` are an _m x n_ matrices and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uplo(A)` with unit/non-unit nature specified by `diag(A)`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_. The right-hand side matrix operand `B` is overwritten with the solution matrix `X`.
Observed object properties: `uplo(A)`, `trans?(A)`, `diag(A)`.
---
## Utility operations
---
#### asumv
```c
void bli_asumv
(
obj_t* x,
obj_t* asum
);
```
Compute the sum of the absolute values of the fundamental elements of vector `x`. The resulting sum is stored to `asum`.
Observed object properties: none.
**Note:** The floating-point type of `asum` is always the real projection of the floating-point type of `x`.
**Note:** This function attempts to mimic the algorithm for computing the absolute vector sum in the netlib BLAS routines `*asum()`.
---
#### norm1m
#### normfm
#### normim
```c
void bli_norm[1fi]m
(
obj_t* a,
obj_t* norm
);
```
Compute the one-norm (`bli_norm1m()`), Frobenius norm (`bli_normfm()`), or infinity norm (`bli_normim()`) of the elements in an _m x n_ matrix `A`. If `uplo(A)` is `BLIS_LOWER` or `BLIS_UPPER` then `A` is assumed to be lower or upper triangular, respectively, with the main diagonal located at offset `diagoff(A)`. The resulting norm is stored to `norm`.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`.
**Note:** The floating-point (`num_t`) type of `norm` is always the real projection of the floating-point type of `x`.
---
#### norm1v
#### normfv
#### normiv
```c
void bli_norm[1fi]v
(
obj_t* x,
obj_t* norm
);
```
Compute the one-norm (`bli_norm1v()`), Frobenius norm (`bli_normfv()`), or infinity norm (`bli_normiv()`) of the elements in a vector `x` of length _n_. The resulting norm is stored to `norm`.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`.
**Note:** The floating-point (`num_t`) type of `norm` is always the real projection of the floating-point type of `x`.
---
#### mkherm
```c
void bli_mkherm
(
obj_t* a
);
```
Make an _m x m_ matrix `A` explicitly Hermitian by copying the conjugate of the triangle specified by `uplo(A)` to the opposite triangle. Imaginary components of diagonal elements are explicitly set to zero. It is assumed that the diagonal offset of `A` is zero.
Observed object properties: `uplo(A)`.
---
#### mksymm
```c
void bli_mksymm
(
obj_t* a
);
```
Make an _m x m_ matrix `A` explicitly symmetric by copying the triangle specified by `uplo(A)` to the opposite triangle. It is assumed that the diagonal offset of `A` is zero.
Observed object properties: `uplo(A)`.
---
#### mktrim
```c
void bli_mktrim
(
obj_t* a
);
```
Make an _m x m_ matrix `A` explicitly triangular by preserving the triangle specified by `uplo(A)` and zeroing the elements in the opposite triangle. It is assumed that the diagonal offset of `A` is zero.
Observed object properties: `uplo(A)`.
---
#### fprintv
```c
void bli_fprintv
(
FILE* file,
char* s1,
obj_t* x,
char* format,
char* s2
);
```
Print a vector `x` of length _m_ to file stream `file`, where `file` is a file pointer returned by the standard C library function `fopen()`. The caller may also pass in a global file pointer such as `stdout` or `stderr`. The strings `s1` and `s2` are printed immediately before and after the output (respectively), and the format specifier `format` is used to format the individual elements. For valid format specifiers, please see documentation for the standard C library function `printf()`.
**Note:** For complex datatypes, the format specifier is applied to both the real and imaginary components **individually**. Therefore, you should use format specifiers such as `"%5.2f"`, but **not** `"%5.2f + %5.2f"`.
---
#### fprintm
```c
void bli_fprintm
(
FILE* file,
char* s1,
obj_t* a,
char* format,
char* s2
);
```
Print an _m x n_ matrix `A` to file stream `file`, where `file` is a file pointer returned by the standard C library function `fopen()`. The caller may also pass in a global file pointer such as `stdout` or `stderr`. The strings `s1` and `s2` are printed immediately before and after the output (respectively), and the format specifier `format` is used to format the individual elements. For valid format specifiers, please see documentation for the standard C library function `printf()`.
**Note:** For complex datatypes, the format specifier is applied to both the real and imaginary components **individually**. Therefore, you should use format specifiers such as `"%5.2f"`, but **not** `"%5.2f + %5.2f"`.
---
#### printv
```c
void bli_printv
(
char* s1,
obj_t* x,
char* format,
char* s2
);
```
Print a vector `x` of length _m_ to standard output. This function call is equivalent to calling `bli_fprintv()` with `stdout` as the file pointer.
---
#### printm
```c
void bli_printm
(
char* s1,
obj_t* a,
char* format,
char* s2
);
```
Print an _m x n_ matrix `a` to standard output. This function call is equivalent to calling `bli_fprintm()` with `stdout` as the file pointer.
---
#### randv
```c
void bli_randv
(
obj_t* x
);
```
Set the elements of a vector `x` of length _n_ to random values on the interval `[-1,1)`.
**Note:** For complex datatypes, the real and imaginary components of each element are randomized individually and independently of one another.
---
#### randm
```c
void bli_randm
(
obj_t* a
);
```
Set the elements of an _m x n_ matrix `A` to random values on the interval `[-1,1)`. Off-diagonal elements (in the triangle specified by `uplo(A)`) are scaled by `1.0/max(m,n)`.
Observed object properties: `diagoff(A)`, `uplo(A)`.
**Note:** For complex datatypes, the real and imaginary components of each off-diagonal element are randomized individually and independently of one another.
**Note:** If `uplo(A)` is `BLIS_LOWER` or `BLIS_UPPER` and you plan to use this matrix to test `trsv` or `trsm`, additional scaling of the diagonal is recommended to ensure that the matrix is invertible. In this case, try using the [addd](BLISObjectAPI.md#addd) operation to increase the magnitude to the diagonal elements.
---
#### sumsqv
```c
void bli_sumsqv
(
obj_t* x,
obj_t* scale,
obj_t* sumsq
);
```
Compute the sum of the squares of the elements in a vector `x` of length _n_. The result is computed in scaled form, and in such a way that it may be used repeatedly to accumulate the sum of the squares of several vectors.
The function computes scale\_new and sumsq\_new such that
```
scale_new^2 * sumsq_new = x[0]^2 + x[1]^2 + ... x[m-1]^2 + scale_old^2 * sumsq_old
```
where, on entry, `scale` and `sumsq` contain `scale_old` and `sumsq_old`, respectively, and on exit, `scale` and `sumsq` contain `scale_new` and `sumsq_new`, respectively.
**Note:** This function attempts to mimic the algorithm for computing the Frobenius norm in the netlib LAPACK routine `?lassq()`.
**Note:** The floating-point (`num_t`) types of `scale` and `sumsq` are always the real projection of the floating-point type of `x`.
---
#### getsc
```c
void bli_getsc
(
obj_t* chi,
double* zeta_r,
double* zeta_i
);
```
Copy the real and imaginary values from the scalar object `chi` to `zeta_r` and `zeta_i`. If `chi` is stored as a real type, then `zeta_i` is set to zero. (If `chi` is stored in single precision, the corresponding elements are typecast/promoted during the copy.)
---
#### getijv
```c
err_t bli_getijv
(
dim_t i,
obj_t* b,
double* ar,
double* ai
)
```
Copy the real and imaginary values at the `i`th element of vector object `x` to `ar` and `ai`. If elements of `x` are stored as real types, then only `ar` is overwritten and `ai` is left unchanged. (If `x` contains elements stored in single precision, the corresponding elements are typecast/promoted during the copy.)
If either the element offset `i` is beyond the vector dimension of `x` or less than zero, the function returns `BLIS_FAILURE` without taking any action. Similarly, if `x` is a global scalar constant such as `BLIS_ONE`, the function returns `BLIS_FAILURE`.
---
#### getijm
```c
err_t bli_getijm
(
dim_t i,
dim_t j,
obj_t* b,
double* ar,
double* ai
)
```
Copy the real and imaginary values at the (`i`,`j`) element of object `b` to `ar` and `ai`. If elements of `b` are stored as real types, then only `ar` is overwritten and `ai` is left unchanged. (If `b` contains elements stored in single precision, the corresponding elements are typecast/promoted during the copy.)
If either the row offset `i` is beyond the _m_ dimension of `b` or less than zero, or column offset `j` is beyond the _n_ dimension of `b` or less than zero, the function returns `BLIS_FAILURE` without taking any action. Similarly, if `b` is a global scalar constant such as `BLIS_ONE`, the function returns `BLIS_FAILURE`.
---
#### setsc
```c
void bli_setsc
(
double* zeta_r,
double* zeta_i,
obj_t* chi
);
```
Copy real and imaginary values `zeta_r` and `zeta_i` to the scalar object `chi`. If `chi` is stored as a real type, then `zeta_i` is ignored. (If `chi` is stored in single precision, the contents are typecast/demoted during the copy.)
---
#### setijv
```c
err_t bli_setijv
(
double ar,
double ai,
dim_t i,
obj_t* x
);
```
Copy real and imaginary values `ar` and `ai` to the `i`th element of vector object `x`. If elements of `x` are stored as real types, then only `ar` is copied and `ai` is ignored. (If `x` contains elements stored in single precision, the corresponding elements are typecast/demoted during the copy.)
If the element offset `i` is beyond the vector dimension of `x` or less than zero, the function returns `BLIS_FAILURE` without taking any action. Similarly, if `x` is a global scalar constant such as `BLIS_ONE`, the function returns `BLIS_FAILURE`.
---
#### setijm
```c
err_t bli_setijm
(
double ar,
double ai,
dim_t i,
dim_t j,
obj_t* b
);
```
Copy real and imaginary values `ar` and `ai` to the (`i`,`j`) element of object `b`. If elements of `b` are stored as real types, then only `ar` is copied and `ai` is ignored. (If `b` contains elements stored in single precision, the corresponding elements are typecast/demoted during the copy.)
If either the row offset `i` is beyond the _m_ dimension of `b` or less than zero, or column offset `j` is beyond the _n_ dimension of `b` or less than zero, the function returns `BLIS_FAILURE` without taking any action. Similarly, if `b` is a global scalar constant such as `BLIS_ONE`, the function returns `BLIS_FAILURE`.
---
#### eqsc
```c
void bli_eqsc
(
obj_t chi,
obj_t psi,
bool* is_eq
);
```
Perform an element-wise comparison between scalars `chi` and `psi` and store the boolean result in the `bool` pointed to by `is_eq`.
If exactly one of `conj(chi)` or `conj(psi)` (but not both) indicate a conjugation, then one of the scalars will be implicitly conjugated for purposes of the comparision.
Observed object properties: `conj?(chi)`, `conj?(psi)`.
---
#### eqv
```c
void bli_eqv
(
obj_t x,
obj_t y,
bool* is_eq
);
```
Perform an element-wise comparison between vectors `x` and `y` and store the boolean result in the `bool` pointed to by `is_eq`.
If exactly one of `conj(x)` or `conj(y)` (but not both) indicate a conjugation, then one of the vectors will be implicitly conjugated for purposes of the comparision.
Observed object properties: `conj?(x)`, `conj?(y)`.
---
#### eqm
```c
void bli_eqm
(
obj_t a,
obj_t b,
bool* is_eq
);
```
Perform an element-wise comparison between matrices `A` and `B` and store the boolean result in the `bool` pointed to by `is_eq`.
Here, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `diag(A)` indicates a unit diagonal, the diagonals of both matrices will be ignored for purposes of the comparision.
If `uplo(A)` indicates lower or upper storage, only that part of both matrices `A` and `B` will be referenced.
If exactly one of `trans(A)` or `trans(B)` (but not both) indicate a transposition, then one of the matrices will be transposed for purposes of the comparison.
Similarly, if exactly one of `trans(A)` or `trans(B)` (but not both) indicate a conjugation, then one of the matrices will be implicitly conjugated for purposes of the comparision.
Observed object properties: `diagoff(A)`, `diag(A)`, `uplo(A)`, `trans?(A)`, `trans?(B)`.
# Query function reference
BLIS allows applications to query information about how BLIS was configured. The `bli_info_` API provides several categories of query routines. Most values are returned as a `gint_t`, which is a signed integer. The size of this integer can be queried through a special routine that returns the size in a character string:
```c
char* bli_info_get_int_type_size_str( void );
```
**Note:** All of the `bli_info_` functions are **always** thread-safe, no matter how BLIS was configured.
## General library information
The following routine returns the address the full BLIS version string:
```c
char* bli_info_get_version_str( void );
```
## Specific configuration
The following routine returns a unique ID of type `arch_t` that identifies the current current active configuration:
```c
arch_t bli_arch_query_id( void );
```
This is most useful when BLIS is configured with multiple configurations. (When linking to multi-configuration builds of BLIS, you don't know for sure which configuration will be used until runtime since the configuration-specific parameters are not loaded until after calling a hueristic to detect the hardware--usually based the `CPUID` instruction.)
Once the configuration's ID is known, it can be used to query a string that contains the name of the configuration:
```c
char* bli_arch_string( arch_t id );
```
## General configuration
The following routines return various general-purpose constants that affect the entire framework. All of these settings default to sane values, which can then be overridden by the configuration in [bli\_config.h](ConfigurationHowTo#bli_configh). If they are absent from a particular configuration's `bli_config.h` header file, then the default value is used, as specified in [frame/include/bli_config_macro_defs.h](https://github.com/flame/blis/blob/master/frame/include/bli_config_macro_defs.h).
```c
gint_t bli_info_get_int_type_size( void );
gint_t bli_info_get_num_fp_types( void );
gint_t bli_info_get_max_type_size( void );
gint_t bli_info_get_page_size( void );
gint_t bli_info_get_simd_num_registers( void );
gint_t bli_info_get_simd_size( void );
gint_t bli_info_get_simd_align_size( void );
gint_t bli_info_get_stack_buf_max_size( void );
gint_t bli_info_get_stack_buf_align_size( void );
gint_t bli_info_get_heap_addr_align_size( void );
gint_t bli_info_get_heap_stride_align_size( void );
gint_t bli_info_get_pool_addr_align_size( void );
gint_t bli_info_get_enable_stay_auto_init( void );
gint_t bli_info_get_enable_blas( void );
gint_t bli_info_get_blas_int_type_size( void );
```
## Kernel information
### Micro-kernel implementation type query
The following routines allow the caller to obtain a string that identifies the implementation type of each microkernel that is currently active (ie: part of the current active configuration, as identified bi `bli_arch_query_id()`).
```c
char* bli_info_get_gemm_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_gemmtrsm_l_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_gemmtrsm_u_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_trsm_l_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_trsm_u_ukr_impl_string( ind_t method, num_t dt )
```
Possible implementation (ie: the `ind_t method` argument) types are:
* `BLIS_1M`: Implementation based on the 1m method. (This is the default induced method when real domain kernels are present but complex kernels are missing.)
* `BLIS_NAT`: Implementation based on "native" execution (ie: NOT an induced method).
Possible microkernel types (ie: the return values for `bli_info_get_*_ukr_impl_string()`) are:
* `BLIS_REFERENCE_UKERNEL` (`"refrnce"`): This value is returned when the queried microkernel is provided by the reference implementation.
* `BLIS_VIRTUAL_UKERNEL` (`"virtual"`): This value is returned when the queried microkernel is driven by a the "virtual" microkernel provided by an induced method. This happens for any `method` value that is not `BLIS_NAT` (ie: native), but only applies to the complex domain.
* `BLIS_OPTIMIZED_UKERNEL` (`"optimzd"`): This value is returned when the queried microkernel is provided by an implementation that is neither reference nor virtual, and thus we assume the kernel author would deem it to be "optimized". Such a microkernel may not be optimal in the literal sense of the word, but nonetheless is _intended_ to be optimized, at least relative to the reference microkernels.
* `BLIS_NOTAPPLIC_UKERNEL` (`"notappl"`): This value is returned usually when performing a `gemmtrsm` or `trsm` microkernel type query for any `method` value that is not `BLIS_NAT` (ie: native). That is, induced methods cannot be (purely) used on `trsm`-based microkernels because these microkernels perform more a triangular inversion, which is not matrix multiplication.
## Clock functions
---
#### clock
```c
double bli_clock
(
void
);
```
Return the amount of time that has elapsed since some fixed time in the past. The return values of `bli_clock()` typically feature nanosecond precision, though this is not guaranteed.
**Note:** On Linux, `bli_clock()` is implemented in terms of `clock_gettime()` using the `clockid_t` value of `CLOCK_MONOTONIC`. On OS X, `bli_clock` is implemented in terms of `mach_absolute_time()`. And on Windows, `bli_clock` is implemented in terms of `QueryPerformanceFrequency()`. Please see [frame/base/bli_clock.c](https://github.com/flame/blis/blob/master/frame/base/bli_clock.c) for more details.
**Note:** This function is returns meaningless values when BLIS is configured with `--disable-system`.
---
#### clock_min_diff
```c
double bli_clock_min_diff
(
double time_prev_min,
double time_start
);
```
This function computes an intermediate value, `time_diff`, equal to `bli_clock() - time_start`, and then tentatively prepares to return the minimum value of `time_diff` and `time_min`. If that minimum value is extremely small (close to zero), the function returns `time_min` instead.
This function is meant to be used in conjuction with `bli_clock()` for
performance timing within applications--specifically in loops where only
the fastest timing is of interest. For example:
```c
double t_save = DBL_MAX;
for( i = 0; i < 3; ++i )
{
double t = bli_clock();
bli_gemm( ... );
t_save = bli_clock_min_diff( t_save, t );
}
double gflops = ( 2.0 * m * k * n ) / ( t_save * 1.0e9 );
```
This code calls `bli_gemm()` three times and computes the performance, in GFLOPS, of the fastest of the three executions.
---
# Example code
BLIS provides lots of example code in the [examples/oapi](https://github.com/flame/blis/tree/master/examples/oapi) directory of the BLIS source distribution. The example code in this directory is set up like a tutorial, and so we recommend starting from the beginning. Topics include creating and managing objects, printing vectors and matrices, setting and querying object properties, and calling a representative subset of the computational level-1v, -1m, -2, -3, and utility operations documented above. Please read the `README` contained within the `examples/oapi` directory for further details.
|