1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
|
# Contents
* **[Contents](BLISTypedAPI.md#contents)**
* **[Operation index](BLISTypedAPI.md#operation-index)**
* **[Introduction](BLISTypedAPI.md#introduction)**
* [BLIS types](BLISTypedAPI.md#blis-types)
* [Integer-based types](BLISTypedAPI.md#integer-based-types)
* [Floating-point types](BLISTypedAPI.md#floating-point-types)
* [Enumerated parameter types](BLISTypedAPI.md#enumerated-parameter-types)
* [Basic vs expert interfaces](BLISTypedAPI.md#basic-vs-expert-interfaces)
* [Context type](BLISTypedAPI.md#context-type)
* [Runtime type](BLISTypedAPI.md#runtime-type)
* [BLIS header file](BLISTypedAPI.md#blis-header-file)
* [Initialization and cleanup](BLISTypedAPI.md#initialization-and-cleanup)
* **[Computational function reference](BLISTypedAPI.md#computational-function-reference)**
* [Level-1v operations](BLISTypedAPI.md#level-1v-operations)
* [Level-1d operations](BLISTypedAPI.md#level-1d-operations)
* [Level-1m operations](BLISTypedAPI.md#level-1m-operations)
* [Level-1f operations](BLISTypedAPI.md#level-1f-operations)
* [Level-2 operations](BLISTypedAPI.md#level-2-operations)
* [Level-3 operations](BLISTypedAPI.md#level-3-operations)
* [Utility operations](BLISTypedAPI.md#utility-operations)
* [Level-3 microkernels](BLISTypedAPI.md#level-3-microkernels)
* **[Query function reference](BLISTypedAPI.md#query-function-reference)**
* [General library information](BLISTypedAPI.md#general-library-information)
* [Specific configuration](BLISTypedAPI.md#specific-configuration)
* [General configuration](BLISTypedAPI.md#general-configuration)
* [Kernel information](BLISTypedAPI.md#kernel-information)
* [Clock functions](BLISTypedAPI.md#clock-functions)
* **[Example code](BLISTypedAPI.md#example-code)**
# Operation index
This index provides a quick way to jump directly to the description for each operation discussed later in the [Computational function reference](BLISTypedAPI.md#computational-function-reference) section:
* **[Level-1v](BLISTypedAPI.md#level-1v-operations)**: Operations on vectors:
* [addv](BLISTypedAPI.md#addv), [amaxv](BLISTypedAPI.md#amaxv), [axpyv](BLISTypedAPI.md#axpyv), [axpbyv](BLISTypedAPI.md#axpbyv), [copyv](BLISTypedAPI.md#copyv), [dotv](BLISTypedAPI.md#dotv), [dotxv](BLISTypedAPI.md#dotxv), [invertv](BLISTypedAPI.md#invertv), [invscalv](BLISTypedAPI.md#invscalv), [scalv](BLISTypedAPI.md#scalv), [scal2v](BLISTypedAPI.md#scal2v), [setv](BLISTypedAPI.md#setv), [subv](BLISTypedAPI.md#subv), [swapv](BLISTypedAPI.md#swapv), [xpbyv](BLISTypedAPI.md#xpbyv)
* **[Level-1d](BLISTypedAPI.md#level-1d-operations)**: Element-wise operations on matrix diagonals:
* [addd](BLISTypedAPI.md#addd), [axpyd](BLISTypedAPI.md#axpyd), [copyd](BLISTypedAPI.md#copyd), [invertd](BLISTypedAPI.md#invertd), [invscald](BLISTypedAPI.md#invscald), [scald](BLISTypedAPI.md#scald), [scal2d](BLISTypedAPI.md#scal2d), [setd](BLISTypedAPI.md#setd), [setid](BLISTypedAPI.md#setid), [shiftd](BLISTypedAPI.md#shiftd), [subd](BLISTypedAPI.md#subd), [xpbyd](BLISTypedAPI.md#xpbyd)
* **[Level-1m](BLISTypedAPI.md#level-1m-operations)**: Element-wise operations on matrices:
* [addm](BLISTypedAPI.md#addm), [axpym](BLISTypedAPI.md#axpym), [copym](BLISTypedAPI.md#copym), [invscalm](BLISTypedAPI.md#invscalm), [scalm](BLISTypedAPI.md#scalm), [scal2m](BLISTypedAPI.md#scal2m), [setm](BLISTypedAPI.md#setm), [subm](BLISTypedAPI.md#subm)
* **[Level-1f](BLISTypedAPI.md#level-1f-operations)**: Fused operations on multiple vectors:
* [axpy2v](BLISTypedAPI.md#axpy2v), [dotaxpyv](BLISTypedAPI.md#dotaxpyv), [axpyf](BLISTypedAPI.md#axpyf), [dotxf](BLISTypedAPI.md#dotxf), [dotxaxpyf](BLISTypedAPI.md#dotxaxpyf)
* **[Level-2](BLISTypedAPI.md#level-2-operations)**: Operations with one matrix and (at least) one vector operand:
* [gemv](BLISTypedAPI.md#gemv), [ger](BLISTypedAPI.md#ger), [hemv](BLISTypedAPI.md#hemv), [her](BLISTypedAPI.md#her), [her2](BLISTypedAPI.md#her2), [symv](BLISTypedAPI.md#symv), [syr](BLISTypedAPI.md#syr), [syr2](BLISTypedAPI.md#syr2), [trmv](BLISTypedAPI.md#trmv), [trsv](BLISTypedAPI.md#trsv)
* **[Level-3](BLISTypedAPI.md#level-3-operations)**: Operations with matrices that are multiplication-like:
* [gemm](BLISTypedAPI.md#gemm), [hemm](BLISTypedAPI.md#hemm), [herk](BLISTypedAPI.md#herk), [her2k](BLISTypedAPI.md#her2k), [symm](BLISTypedAPI.md#symm), [syrk](BLISTypedAPI.md#syrk), [syr2k](BLISTypedAPI.md#syr2k), [trmm](BLISTypedAPI.md#trmm), [trmm3](BLISTypedAPI.md#trmm3), [trsm](BLISTypedAPI.md#trsm)
* **[Utility](BLISTypedAPI.md#Utility-operations)**: Miscellaneous operations on matrices and vectors:
* [asumv](BLISTypedAPI.md#asumv), [norm1v](BLISTypedAPI.md#norm1v), [normfv](BLISTypedAPI.md#normfv), [normiv](BLISTypedAPI.md#normiv), [norm1m](BLISTypedAPI.md#norm1m), [normfm](BLISTypedAPI.md#normfm), [normim](BLISTypedAPI.md#normim), [mkherm](BLISTypedAPI.md#mkherm), [mksymm](BLISTypedAPI.md#mksymm), [mktrim](BLISTypedAPI.md#mktrim), [fprintv](BLISTypedAPI.md#fprintv), [fprintm](BLISTypedAPI.md#fprintm),[printv](BLISTypedAPI.md#printv), [printm](BLISTypedAPI.md#printm), [randv](BLISTypedAPI.md#randv), [randm](BLISTypedAPI.md#randm), [sumsqv](BLISTypedAPI.md#sumsqv), [getsc](BLISTypedAPI.md#getsc), [getijv](BLISTypedAPI.md#getijv), [getijm](BLISTypedAPI.md#getijm), [setsc](BLISTypedAPI.md#setsc), [setijv](BLISTypedAPI.md#setijv), [setijm](BLISTypedAPI.md#setijm), [eqsc](BLISTypedAPI.md#eqsc), [eqv](BLISTypedAPI.md#eqv), [eqm](BLISTypedAPI.md#eqm)
# Introduction
This document summarizes one of the primary native APIs in BLIS--the "typed" API. Here, we also discuss BLIS-specific type definitions, header files, and prototypes to auxiliary functions. This document also includes APIs to key kernels which are used to accelerate and optimize various level-2 and level-3 operations, though the [Kernels Guide](KernelsHowTo.md) goes into more detail, especially for level-3 microkernels.
There are many functions that BLIS implements that are not listed here, either because they are lower-level functions, or they are considered for use primarily by developers and experts.
For curious readers, the typed API was given its name (a) because it exposes the floating-point types in the names of its functions, and (b) to contrast it with the other native API in BLIS, the object API, which is [documented here](BLISObjectAPI.md). (The third API supported by BLIS is the BLAS compatibility layer, which mimics conventional Fortran-77 BLAS.)
In general, this document should be treated more as a reference than a place to learn how to use BLIS in your application. Thus, we highly encourage all readers to first study the [example code](BLISTypedAPI.md#example-code) provided within the BLIS source distribution.
## BLIS types
The following tables list various types used throughout the BLIS typed API.
### Integer-based types
| BLIS integer type | Type definition | Used to represent... |
|:------------------|:-----------------------|:---------------------------------------------------------------------|
| `gint_t` | `int32_t` or `int64_t` | general-purpose signed integer; used to define signed integer types. |
| `dim_t` | `gint_t` | matrix and vector dimensions. |
| `inc_t` | `gint_t` | matrix row/column strides and vector increments. |
| `doff_t` | `gint_t` | matrix diagonal offset: if _k_ < 0, diagonal begins at element (-_k_,0); otherwise diagonal begins at element (0,_k_). |
### Floating-point types
| BLIS type | BLIS char | Type definition | Used to represent... |
|:-----------|:----------|:---------------------------------------|:-------------------------------------|
| `float` | `s` | _N/A_ | single-precision real numbers |
| `double` | `d` | _N/A_ | double-precision real numbers |
| `scomplex` | `c` | `struct { float real; float imag; }` | single-precision complex numbers |
| `dcomplex` | `z` | `struct { double real; double imag; }` | double-precision complex numbers |
### Enumerated parameter types
| `trans_t` | Semantic meaning: Corresponding matrix operand... |
|:-------------------------|:--------------------------------------------------|
| `BLIS_NO_TRANSPOSE` | will be used as given. |
| `BLIS_TRANSPOSE` | will be implicitly transposed. |
| `BLIS_CONJ_NO_TRANSPOSE` | will be implicitly conjugated. |
| `BLIS_CONJ_TRANSPOSE` | will be implicitly transposed _and_ conjugated. |
| `conj_t` | Semantic meaning: Corresponding matrix/vector operand... |
|:---------------------|:---------------------------------------------------------|
| `BLIS_NO_CONJUGATE` | will be used as given. |
| `BLIS_CONJUGATE` | will be implicitly conjugated. |
| `side_t` | Semantic meaning: Corresponding matrix operand... |
|:-------------|:---------------------------------------------------|
| `BLIS_LEFT` | appears on the left. |
| `BLIS_RIGHT` | appears on the right. |
| `uplo_t` | Semantic meaning: Corresponding matrix operand... |
|:-------------|:--------------------------------------------------|
| `BLIS_LOWER` | is stored in (and will be accessed only from) the lower triangle. |
| `BLIS_UPPER` | is stored in (and will be accessed only from) the upper triangle. |
| `BLIS_DENSE` | is stored as a full matrix (ie: in both triangles). |
| `diag_t` | Semantic meaning: Corresponding matrix operand... |
|:--------------------|:--------------------------------------------------|
| `BLIS_NONUNIT_DIAG` | has a non-unit diagonal that should be explicitly read from. |
| `BLIS_UNIT_DIAG` | has a unit diagonal that should be implicitly assumed (and not read from). |
### Basic vs expert interfaces
The functions listed in this document belong to the "basic" interface subset of the BLIS typed API. There is a companion "expert" interface that mirrors the basic interface, except that it also contains at least one additional parameter that is only of interest to experts and library developers. The expert interfaces use the same name as the basic function names, except for an additional "_ex" suffix. For example, the basic interface for `gemm` is
```c
void bli_?gemm
(
trans_t transa,
trans_t transb,
dim_t m,
dim_t n,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
while the expert interface is:
```c
void bli_?gemm_ex
(
trans_t transa,
trans_t transb,
dim_t m,
dim_t n,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc,
cntx_t* cntx,
rntm_t* rntm
);
```
The expert interface contains two additional parameters: a `cntx_t*` and `rntm_t*`. Note that calling a function from the expert interface with the `cntx_t*` and `rntm_t*` arguments each set to `NULL` is equivalent to calling the corresponding basic interface. Specifically, a `NULL` value passed in for the `cntx_t*` results in a valid context being queried from BLIS, and a `NULL` value passed in for the `rntm_t*` results in the current global settings for multithreading to be used.
## Context type
In general, it is permissible to pass in `NULL` for a `cntx_t*` parameter when calling an expert interface such as `bli_dgemm_ex()`. However, there are cases where `NULL` values are not accepted and may result in a segmentation fault. Specifically, the `cntx_t*` argument appears in the interfaces to the `gemm`, `trsm`, and `gemmtrsm` [level-3 microkernels](KernelsHowTo.md#level-3) along with all [level-1v](KernelsHowTo.md#level-1v) and [level-1f](KernelsHowTo.md#level-1f) kernels. There, as a general rule, a valid pointer must be passed in. Whenever a valid context is needed, the developer may query a default context from the global kernel structure (if a context is not already available in the current scope):
```c
cntx_t* bli_gks_query_cntx( void );
```
When BLIS is configured to target a configuration family (e.g. `intel64`, `x86_64`), `bli_gks_query_cntx()` will use `cpuid` or an equivalent heuristic to select and and return the appropriate context. When BLIS is configured to target a singleton sub-configuration (e.g. `haswell`, `skx`), `bli_gks_query_cntx()` will unconditionally return a pointer to the context appropriate for the targeted configuration.
## Runtime type
When calling one of the expert interfaces, a `rntm_t` (runtime) object can be used to convey a thread-local request for parallelism to the underlying implementation. Runtime objects are thread-safe by nature when they are declared statically as a stack variable (or allocated via `malloc()`), initialized, and then passed into the expert interface of interest.
Notice that runtime objects have no analogue in most BLAS libraries, where you are forced to specify parallelism at a global level (usually via environment variables).
For more information on using `rntm_t` objects, please read the [Multithreading](Multithreading.md) documentation, paying close attention to the section on [local setting of parallelism](Multithreading.md#locally-at-runtime).
## BLIS header file
All BLIS definitions and prototypes may be included in your C source file by including a single header file:
```c
#include "blis.h"
```
## Initialization and Cleanup
As of [9804adf](https://github.com/flame/blis/commit/9804adfd405056ec332bb8e13d68c7b52bd3a6c1), BLIS no longer requires explicit initialization and finalization at runtime. In other words, users do not need to call `bli_init()` before the application can make use of the library (and `bli_finalize()` after the application is finished with the library). Instead, all computational operations (and some non-computational functions) in BLIS will initialize the library on behalf of the user if it has not already been initialized. This change was made to simplify the user experience.
Application developers should keep in mind, however, that this new self-initialization regime implies the following: unless the library is *explicitly* finalized via `bli_finalize()`, it will, once initialized, remain initialized for the life of the application. This is likely not a problem in the vast majority of cases. However, a memory-constrained application that performs all of its DLA up-front, for example, may wish to explicitly finalize the library after BLIS is no longer needed in order to free up memory for other purposes.
Similarly, an expert user may call `bli_init()` manually in order to control when the overhead of library initialization is incurred, even though the library would have self-initialized.
The interfaces to `bli_init()` and `bli_finalize()` are quite simple; they require no arguments and return no values:
```c
void bli_init( void );
void bli_finalize( void );
```
# Computational function reference
Notes for interpreting the following prototypes:
* Any occurrence of `?` should be replaced with `s`, `d`, `c`, or `z` to form an actual function name.
* Any occurrence of `ctype` should be replaced with the actual C type corresponding to the datatype instance in question, while `rtype` should be replaced by the real projection of `ctype`. For example:
* If we consider the prototype for `bli_zaxpyv()` below, `ctype` refers to `dcomplex`.
* If we consider the prototype for `bli_znormfv()` below, `ctype` refers to `dcomplex` while `rtype` refers to `double`.
* Any occurrence of `itype` should be replaced with the general-purpose signed integer type, `gint_t`.
* All vector arguments have associated increments that proceed them, typically listed as `incX` for a given vector `x`. The semantic meaning of a vector increment is "the distance, in units of elements, between any two adjacent elements in the vector."
* All matrix arguments have associated row and column strides arguments that proceed them, typically listed as `rsX` and `csX` for a given matrix `X`. Row strides are always listed first, and column strides are always listed second. The semantic meaning of a row stride is "the distance, in units of elements, to the next row (within a column)," and the meaning of a column stride is "the distance, in units of elements, to the next column (within a row)." Thus, unit row stride implies column-major storage and unit column stride implies row-major storage.
Notes for interpreting function descriptions:
* `conjX()` and `transX()` should be interpreted as predicates that capture the operand X with any value of `conj_t` or `trans_t` applied. For example:
* `conjx(x)` refers to a vector `x` that is either conjugated or used as given.
* `transa(A)` refers to a matrix `A` that is either transposed, conjugated _and_ transposed, conjugated only, or used as given.
* Any operand marked with `conj()` is unconditionally conjugated.
* Any operand marked with `^T` is unconditionally transposed. Similarly, any operand that is marked with `^H` is unconditionally conjugate-transposed.
* All occurrences of `alpha`, `beta`, and `rho` parameters are scalars.
---
## Level-1v operations
Level-1v operations perform various level-1 BLAS-like operations on vectors (hence the _v_).
**Note**: Most level-1v operations have a corresponding level-1v kernel through which it is primarily implemented.
---
#### addv
```c
void bli_?addv
(
conj_t conjx,
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := y + conjx(x)
```
where `x` and `y` are vectors of length _n_.
---
#### amaxv
```c
void bli_?amaxv
(
dim_t n,
ctype* x, inc_t incx,
dim_t* index
);
```
Given a vector of length _n_, return the zero-based index `index` of the element of vector `x` that contains the largest absolute value (or, in the complex domain, the largest complex modulus).
If `NaN` is encountered, it is treated as if it were a valid value that was smaller than any other value in the vector. If more than one element contains the same maximum value, the index of the latter element is returned via `index`.
**Note:** This function attempts to mimic the algorithm for finding the element with the maximum absolute value in the netlib BLAS routines `i?amax()`.
---
#### axpyv
```c
void bli_?axpyv
(
conj_t conjx,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := y + alpha * conjx(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` is a scalar.
---
#### axpbyv
```c
void bli_?axpbyv
(
conj_t conjx,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := beta * y + alpha * conjx(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` and `beta` are scalars.
---
#### copyv
```c
void bli_?copyv
(
conj_t conjx,
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := conjx(x)
```
where `x` and `y` are vectors of length _n_.
---
#### dotv
```c
void bli_?dotv
(
conj_t conjx,
conj_t conjy,
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* rho
);
```
Perform
```
rho := conjx(x)^T * conjy(y)
```
where `x` and `y` are vectors of length _n_, and `rho` is a scalar.
---
#### dotxv
```c
void bli_?dotxv
(
conj_t conjx,
conj_t conjy,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* beta,
ctype* rho
);
```
Perform
```
rho := beta * rho + alpha * conjx(x)^T * conjy(y)
```
where `x` and `y` are vectors of length _n_, and `alpha`, `beta`, and `rho` are scalars.
---
#### invertv
```c
void bli_?invertv
(
dim_t n,
ctype* x, inc_t incx
);
```
Invert all elements of an _n_-length vector `x`.
---
#### invscalv
```c
void bli_?invscalv
(
conj_t conjalpha,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx
);
```
Perform
```
x := ( 1.0 / conjalpha(alpha) ) * x
```
where `x` is a vector of length _n_, and `alpha` is a scalar.
---
#### scalv
```c
void bli_?scalv
(
conj_t conjalpha,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx
);
```
Perform
```
x := conjalpha(alpha) * x
```
where `x` is a vector of length _n_, and `alpha` is a scalar.
---
#### scal2v
```c
void bli_?scal2v
(
conj_t conjx,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := alpha * conjx(x)
```
where `x` and `y` are vectors of length _n_, and `alpha` is a scalar.
---
#### setv
```c
void bli_?setv
(
conj_t conjalpha,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx
);
```
Perform
```
x := conjalpha(alpha)
```
That is, set all elements of an _n_-length vector `x` to scalar `conjalpha(alpha)`.
---
#### subv
```c
void bli_?subv
(
conj_t conjx,
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := y - conjx(x)
```
where `x` and `y` are vectors of length _n_.
---
#### swapv
```c
void bli_?swapv
(
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Swap corresponding elements of two _n_-length vectors `x` and `y`.
---
#### xpbyv
```c
void bli_?xpbyv
(
conj_t conjx,
dim_t n,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := beta * y + conjx(x)
```
where `x` and `y` are vectors of length _n_, and `beta` is a scalar.
---
## Level-1d operations
Level-1d operations perform various level-1 BLAS-like operations on matrix diagonals (hence the _d_).
Most of these operations are similar to level-1m counterparts, except they only read and update matrix diagonals and therefore do not take any `uplo` arguments. Please see the descriptions for the corresponding level-1m operation for a description of the arguments.
---
#### addd
```c
void bli_?addd
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
---
#### axpyd
```c
void bli_?axpyd
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
---
#### copyd
```c
void bli_?copyd
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
---
#### invertd
```c
void bli_?invertd
(
doff_t diagoffa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa
);
```
---
#### invscald
```c
void bli_?invscald
(
conj_t conjalpha,
doff_t diagoffa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
---
#### scald
```c
void bli_?scald
(
conj_t conjalpha,
doff_t diagoffa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
---
#### scal2d
```c
void bli_?scal2d
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
---
#### setd
```c
void bli_?setd
(
conj_t conjalpha,
doff_t diagoffa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
---
#### setid
```c
void bli_?setid
(
doff_t diagoffa,
dim_t m,
dim_t n,
ctype_r* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
Set the imaginary components of every element along the diagonal of `a`, as
specified by `diagoffa`, to a scalar `alpha`.
Note that the datatype of `alpha` must be the real projection of the datatype
of `a`.
---
#### shiftd
```c
void bli_?shiftd
(
doff_t diagoffa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
Add a constant value `alpha` to every element along the diagonal of `a`, as
specified by `diagoffa`.
---
#### subd
```c
void bli_?subd
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
---
#### xpbyd
```c
void bli_?xpbyd
(
doff_t diagoffa,
diag_t diaga,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* beta,
ctype* b, inc_t rsb, inc_t csb
);
```
---
## Level-1m operations
Level-1m operations perform various level-1 BLAS-like operations on matrices (hence the _m_).
---
#### addm
```c
void bli_?addm
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := B + transa(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
---
#### axpym
```c
void bli_?axpym
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := B + alpha * transa(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
---
#### copym
```c
void bli_?copym
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := transa(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
---
#### invscalm
```c
void bli_?invscalm
(
conj_t conjalpha,
doff_t diagoffa,
uplo_t uploa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := ( 1.0 / conjalpha(alpha) ) * A
```
where `A` is an _m x n_ matrix stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be updated.
---
#### scalm
```c
void bli_?scalm
(
conj_t conjalpha,
doff_t diagoffa,
uplo_t uploa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := conjalpha(alpha) * A
```
where `A` is an _m x n_ matrix stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be updated.
---
#### scal2m
```c
void bli_?scal2m
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := alpha * transa(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
---
#### setm
```c
void bli_?setm
(
conj_t conjalpha,
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa
);
```
Set all elements of an _m x n_ matrix `A` to `conjalpha(alpha)`, where `A` is stored as a dense matrix, or lower- or upper- triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be updated.
---
#### subm
```c
void bli_?subm
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := B - transa(A)
```
where `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix, as specified by `uploa`, with the diagonal offset of `A` specified by `diagoffa` and unit/non-unit nature of the diagonal specified by `diaga`. If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced and used to update `B`.
---
## Level-1f operations
Level-1f operations implement various fused combinations of level-1 operations (hence the _f_).
**Note**: Each level-1f operation has a corresponding level-1f kernel through which it is primarily implemented.
Level-1f kernels are employed when optimizing level-2 operations.
---
#### axpy2v
```c
void bli_?axpy2v
(
conj_t conjx,
conj_t conjy,
dim_t m,
ctype* alphax,
ctype* alphay,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* z, inc_t incz
);
```
Perform
```
z := y + alphax * conjx(x) + alphay * conjy(y)
```
where `x`, `y`, and `z` are vectors of length _m_. The kernel, if optimized, is implemented as a fused pair of calls to [axpyv](BLISTypedAPI.md#axpyv).
---
#### dotaxpyv
```c
void bli_?dotaxpyv
(
conj_t conjxt,
conj_t conjx,
conj_t conjy,
dim_t m,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* rho,
ctype* z, inc_t incz
);
```
Perform
```
rho := conjxt(x^T) * conjy(y)
y := y + alpha * conjx(x)
```
where `x`, `y`, and `z` are vectors of length _m_ and `alpha` and `rho` are scalars. The kernel, if optimized, is implemented as a fusion of calls to [dotv](BLISTypedAPI.md#dotv) and [axpyv](BLISTypedAPI.md#axpyv).
---
#### axpyf
```c
void bli_?axpyf
(
conj_t conja,
conj_t conjx,
dim_t m,
dim_t b,
ctype* alpha,
ctype* a, inc_t inca, inc_t lda,
ctype* x, inc_t incx,
ctype* y, inc_t incy
);
```
Perform
```
y := y + alpha * conja(A) * conjx(x)
```
where `A` is an _m x b_ matrix, and `y` and `x` are vectors. The kernel, if optimized, is implemented as a fused series of calls to [axpyv](BLISTypedAPI.md#axpyv) where _b_ is less than or equal to an implementation-dependent fusing factor specific to `axpyf`.
---
#### dotxf
```c
void bli_?dotxf
(
conj_t conjat,
conj_t conjx,
dim_t m,
dim_t b,
ctype* alpha,
ctype* a, inc_t inca, inc_t lda,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := y + alpha * conjat(A^T) * conjx(x)
```
where `A` is an _m x b_ matrix, and `y` and `x` are vectors. The kernel, if optimized, is implemented as a fused series of calls to [dotxv](BLISTypedAPI.md#dotxv) where _b_ is less than or equal to an implementation-dependent fusing factor specific to `dotxf`.
---
#### dotxaxpyf
```c
void bli_?dotxaxpyf
(
conj_t conjat,
conj_t conja,
conj_t conjw,
conj_t conjx,
dim_t m,
dim_t b,
ctype* alpha,
ctype* a, inc_t inca, inc_t lda,
ctype* w, inc_t incw,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy,
ctype* z, inc_t incz
);
```
Perform
```
y := beta * y + alpha * conjat(A^T) * conjw(w)
z := z + alpha * conja(A) * conjx(x)
```
where `A` is an _m x b_ matrix, `w` and `z` are vectors of length _m_, `x` and `y` are vectors of length `b`, and `alpha` and `beta` are scalars. The kernel, if optimized, is implemented as a fusion of calls to [dotxf](BLISTypedAPI.md#dotxf) and [axpyf](BLISTypedAPI.md#axpyf).
## Level-2 operations
Level-2 operations perform various level-2 BLAS-like operations.
---
#### gemv
```c
void bli_?gemv
(
trans_t transa,
conj_t conjx,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := beta * y + alpha * transa(A) * conjx(x)
```
where `transa(A)` is an _m x n_ matrix, and `y` and `x` are vectors.
---
#### ger
```c
void bli_?ger
(
conj_t conjx,
conj_t conjy,
dim_t m,
dim_t n,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := A + alpha * conjx(x) * conjy(y)^T
```
where `A` is an _m x n_ matrix, and `x` and `y` are vectors of length _m_ and _n_, respectively.
---
#### hemv
```c
void bli_?hemv
(
uplo_t uploa,
conj_t conja,
conj_t conjx,
dim_t m,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := beta * y + alpha * conja(A) * conjx(x)
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uploa`, and `y` and `x` are vectors of length _m_.
---
#### her
```c
void bli_?her
(
uplo_t uploa,
conj_t conjx,
dim_t m,
rtype* alpha,
ctype* x, inc_t incx,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := A + alpha * conjx(x) * conjx(x)^H
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uploa`, and `x` is a vector of length _m_.
**Note:** The floating-point type of `alpha` is always the real projection of the floating-point types of `x` and `A`.
---
#### her2
```c
void bli_?her2
(
uplo_t uploa,
conj_t conjx,
conj_t conjy,
dim_t m,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := A + alpha * conjx(x) * conjy(y)^H + conj(alpha) * conjy(y) * conjx(x)^H
```
where `A` is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uploa`, and `x` and `y` are vectors of length _m_.
---
#### symv
```c
void bli_?symv
(
uplo_t uploa,
conj_t conja,
conj_t conjx,
dim_t m,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* x, inc_t incx,
ctype* beta,
ctype* y, inc_t incy
);
```
Perform
```
y := beta * y + alpha * conja(A) * conjx(x)
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa`, and `y` and `x` are vectors of length _m_.
---
#### syr
```c
void bli_?syr
(
uplo_t uploa,
conj_t conjx,
dim_t m,
ctype* alpha,
ctype* x, inc_t incx,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := A + alpha * conjx(x) * conjx(x)^T
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa`, and `x` is a vector of length _m_.
---
#### syr2
```c
void bli_?syr2
(
uplo_t uploa,
conj_t conjx,
conj_t conjy,
dim_t m,
ctype* alpha,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
ctype* a, inc_t rsa, inc_t csa
);
```
Perform
```
A := A + alpha * conjx(x) * conjy(y)^T + conj(alpha) * conjy(y) * conjx(x)^T
```
where `A` is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa`, and `x` and `y` are vectors of length _m_.
---
#### trmv
```c
void bli_?trmv
(
uplo_t uploa,
trans_t transa,
diag_t diaga,
dim_t m,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* x, inc_t incx
);
```
Perform
```
x := alpha * transa(A) * x
```
where `A` is an _m x m_ triangular matrix stored in the lower or upper triangle as specified by `uploa` with unit/non-unit nature specified by `diaga`, and `x` is a vector of length _m_.
---
#### trsv
```c
void bli_?trsv
(
uplo_t uploa,
trans_t transa,
diag_t diaga,
dim_t m,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* y, inc_t incy
);
```
Solve the linear system
```
transa(A) * x = alpha * y
```
where `A` is an _m x m_ triangular matrix stored in the lower or upper triangle as specified by `uploa` with unit/non-unit nature specified by `diaga`, and `x` and `y` are vectors of length _m_. The right-hand side vector operand `y` is overwritten with the solution vector `x`.
---
## Level-3 operations
Level-3 operations perform various level-3 BLAS-like operations.
**Note**: Each All level-3 operations are implemented through a handful of level-3 microkernels. Please see the [Kernels Guide](KernelsHowTo.md) for more details.
---
#### gemm
```c
void bli_?gemm
(
trans_t transa,
trans_t transb,
dim_t m,
dim_t n,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transb(B)
```
where C is an _m x n_ matrix, `transa(A)` is an _m x k_ matrix, and `transb(B)` is a _k x n_ matrix.
---
#### gemmt
```c
void bli_?gemmt
(
uplo_t uploc,
trans_t transa,
trans_t transb,
dim_t m,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transb(B)
```
where C is an _m x m_ matrix, `transa(A)` is an _m x k_ matrix, and `transb(B)` is a _k x m_ matrix. This operation is similar to `bli_?gemm()` except that it only updates the lower or upper triangle of `C` as specified by `uploc`.
---
#### hemm
```c
void bli_?hemm
(
side_t sidea,
uplo_t uploa,
conj_t conja,
trans_t transb,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * conja(A) * transb(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * transb(B) * conja(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `B` are _m x n_ matrices and `A` is a Hermitian matrix stored in the lower or upper triangle as specified by `uploa`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
---
#### herk
```c
void bli_?herk
(
uplo_t uploc,
trans_t transa,
dim_t m,
dim_t k,
rtype* alpha,
ctype* a, inc_t rsa, inc_t csa,
rtype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transa(A)^H
```
where C is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uploc` and `transa(A)` is an _m x k_ matrix.
**Note:** The floating-point types of `alpha` and `beta` are always the real projection of the floating-point types of `A` and `C`.
---
#### her2k
```c
void bli_?her2k
(
uplo_t uploc,
trans_t transa,
trans_t transb,
dim_t m,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
rtype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H
```
where C is an _m x m_ Hermitian matrix stored in the lower or upper triangle as specified by `uploc` and `transa(A)` and `transb(B)` are _m x k_ matrices.
**Note:** The floating-point type of `beta` is always the real projection of the floating-point types of `A` and `C`.
---
#### symm
```c
void bli_?symm
(
side_t sidea,
uplo_t uploa,
conj_t conja,
trans_t transb,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * conja(A) * transb(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * transb(B) * conja(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `B` are _m x n_ matrices and `A` is a symmetric matrix stored in the lower or upper triangle as specified by `uploa`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
---
#### syrk
```c
void bli_?syrk
(
uplo_t uploc,
trans_t transa,
dim_t m,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transa(A)^T
```
where C is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa` and `transa(A)` is an _m x k_ matrix.
---
#### syr2k
```c
void bli_?syr2k
(
uplo_t uploc,
trans_t transa,
trans_t transb,
dim_t m,
dim_t k,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T
```
where C is an _m x m_ symmetric matrix stored in the lower or upper triangle as specified by `uploa` and `transa(A)` and `transb(B)` are _m x k_ matrices.
---
#### trmm
```c
void bli_?trmm
(
side_t sidea,
uplo_t uploa,
trans_t transa,
diag_t diaga,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Perform
```
B := alpha * transa(A) * B
```
if `sidea` is `BLIS_LEFT`, or
```
B := alpha * B * transa(A)
```
if `sidea` is `BLIS_RIGHT`, where `B` is an _m x n_ matrix and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uploa` with unit/non-unit nature specified by `diaga`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
---
#### trmm3
```c
void bli_?trmm3
(
side_t sidea,
uplo_t uploa,
trans_t transa,
diag_t diaga,
trans_t transb,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb,
ctype* beta,
ctype* c, inc_t rsc, inc_t csc
);
```
Perform
```
C := beta * C + alpha * transa(A) * transb(B)
```
if `sidea` is `BLIS_LEFT`, or
```
C := beta * C + alpha * transb(B) * transa(A)
```
if `sidea` is `BLIS_RIGHT`, where `C` and `transb(B)` are _m x n_ matrices and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uploa` with unit/non-unit nature specified by `diaga`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_.
---
#### trsm
```c
void bli_?trsm
(
side_t sidea,
uplo_t uploa,
trans_t transa,
diag_t diaga,
dim_t m,
dim_t n,
ctype* alpha,
ctype* a, inc_t rsa, inc_t csa,
ctype* b, inc_t rsb, inc_t csb
);
```
Solve the linear system with multiple right-hand sides
```
transa(A) * X = alpha * B
```
if `sidea` is `BLIS_LEFT`, or
```
X * transa(A) = alpha * B
```
if `sidea` is `BLIS_RIGHT`, where `X` and `B` are an _m x n_ matrices and `A` is a triangular matrix stored in the lower or upper triangle as specified by `uploa` with unit/non-unit nature specified by `diaga`. When `sidea` is `BLIS_LEFT`, `A` is _m x m_, and when `sidea` is `BLIS_RIGHT`, `A` is _n x n_. The right-hand side matrix operand `B` is overwritten with the solution matrix `X`.
---
## Utility operations
---
#### asumv
```c
void bli_?asumv
(
dim_t n,
ctype* x, inc_t incx,
rtype* asum
);
```
Compute the sum of the absolute values of the fundamental elements of vector `x`. The resulting sum is stored to `asum`.
**Note:** The floating-point type of `asum` is always the real projection of the floating-point type of `x`.
**Note:** This function attempts to mimic the algorithm for computing the absolute vector sum in the netlib BLAS routines `*asum()`.
---
#### norm1m
#### normfm
#### normim
```c
void bli_?norm[1fi]m
(
doff_t diagoffa,
doff_t diaga,
uplo_t uploa,
dim_t m,
dim_t n,
ctype* a, inc_t rs_a, inc_t cs_a,
rtype* norm
);
```
Compute the one-norm (`bli_?norm1m()`), Frobenius norm (`bli_?normfm()`), or infinity norm (`bli_?normim()`) of the elements in an _m x n_ matrix `A`. If `uploa` is `BLIS_LOWER` or `BLIS_UPPER` then `A` is assumed to be lower or upper triangular, respectively, with the main diagonal located at offset `diagoffa`. The resulting norm is stored to `norm`.
**Note:** The floating-point type of `norm` is always the real projection of the floating-point type of `x`.
---
#### norm1v
#### normfv
#### normiv
```c
void bli_?norm[1fi]v
(
dim_t n,
ctype* x, inc_t incx,
rtype* norm
);
```
Compute the one-norm (`bli_?norm1v()`), Frobenius norm (`bli_?normfv()`), or infinity norm (`bli_?normiv()`) of the elements in a vector `x` of length _n_. The resulting norm is stored to `norm`.
**Note:** The floating-point type of `norm` is always the real projection of the floating-point type of `x`.
---
#### mkherm
```c
void bli_?mkherm
(
uplo_t uploa,
dim_t m,
ctype* a, inc_t rs_a, inc_t cs_a
);
```
Make an _m x m_ matrix `A` explicitly Hermitian by copying the conjugate of the triangle specified by `uploa` to the opposite triangle. Imaginary components of diagonal elements are explicitly set to zero. It is assumed that the diagonal offset of `A` is zero.
---
#### mksymm
```c
void bli_?mksymm
(
uplo_t uploa,
dim_t m,
ctype* a, inc_t rs_a, inc_t cs_a
);
```
Make an _m x m_ matrix `A` explicitly symmetric by copying the triangle specified by `uploa` to the opposite triangle. It is assumed that the diagonal offset of `A` is zero.
---
#### mktrim
```c
void bli_?mktrim
(
uplo_t uploa,
dim_t m,
ctype* a, inc_t rs_a, inc_t cs_a
);
```
Make an _m x m_ matrix `A` explicitly triangular by preserving the triangle specified by `uploa` and zeroing the elements in the opposite triangle. It is assumed that the diagonal offset of `A` is zero.
---
#### fprintv
```c
void bli_?fprintv
(
FILE* file,
char* s1,
dim_t m,
ctype* x, inc_t incx,
char* format,
char* s2
);
```
Print a vector `x` of length _m_ to file stream `file`, where `file` is a file pointer returned by the standard C library function `fopen()`. The caller may also pass in a global file pointer such as `stdout` or `stderr`. The strings `s1` and `s2` are printed immediately before and after the output (respectively), and the format specifier `format` is used to format the individual elements. For valid format specifiers, please see documentation for the standard C library function `printf()`.
**Note:** For complex datatypes, the format specifier is applied to both the real and imaginary components **individually**. Therefore, you should use format specifiers such as `"%5.2f"`, but **not** `"%5.2f + %5.2f"`.
---
#### fprintm
```c
void bli_?fprintm
(
FILE* file,
char* s1,
dim_t m,
dim_t n,
ctype* a, inc_t rs_a, inc_t cs_a,
char* format,
char* s2
);
```
Print an _m x n_ matrix `A` to file stream `file`, where `file` is a file pointer returned by the standard C library function `fopen()`. The caller may also pass in a global file pointer such as `stdout` or `stderr`. The strings `s1` and `s2` are printed immediately before and after the output (respectively), and the format specifier `format` is used to format the individual elements. For valid format specifiers, please see documentation for the standard C library function `printf()`.
**Note:** For complex datatypes, the format specifier is applied to both the real and imaginary components **individually**. Therefore, you should use format specifiers such as `"%5.2f"`, but **not** `"%5.2f + %5.2f"`.
---
#### printv
```c
void bli_?printv
(
char* s1,
dim_t m,
ctype* x, inc_t incx,
char* format,
char* s2
);
```
Print a vector `x` of length _m_ to standard output. This function call is equivalent to calling `bli_?fprintv()` with `stdout` as the file pointer.
---
#### printm
```c
void bli_?printm
(
char* s1,
dim_t m,
dim_t n,
ctype* a, inc_t rs_a, inc_t cs_a,
char* format,
char* s2
);
```
Print an _m x n_ matrix `a` to standard output. This function call is equivalent to calling `bli_?fprintm()` with `stdout` as the file pointer.
---
#### randv
```c
void bli_?randv
(
dim_t n,
ctype* x, inc_t incx
);
```
Set the elements of a vector `x` of length _n_ to random values on the interval `[-1,1)`.
**Note:** For complex datatypes, the real and imaginary components of each element are randomized individually and independently of one another.
---
#### randm
```c
void bli_?randm
(
doff_t diagoffa,
uplo_t uploa,
dim_t m,
dim_t n,
ctype* a, inc_t rs_a, inc_t cs_a
);
```
Set the elements of an _m x n_ matrix `A` to random values on the interval `[-1,1)`. If `uploa` is `BLIS_LOWER` or `BLIS_UPPER`, then additional scaling occurs so that the resulting matrix is diagonally dominant. Specifically, the diagonal elements (identified by diagonal offset `diagoffa`) are shifted so that they lie on the interval `[1,2)` and the off-diagonal elements (in the triangle specified by `uploa`) are scaled by `1.0/max(m,n)`.
**Note:** For complex datatypes, the real and imaginary components of each off-diagonal element are randomized individually and independently of one another.
---
#### sumsqv
```c
void bli_?sumsqv
(
dim_t n,
ctype* x, inc_t incx,
rtype* scale,
rtype* sumsq
);
```
Compute the sum of the squares of the elements in a vector `x` of length _n_. The result is computed in scaled form, and in such a way that it may be used repeatedly to accumulate the sum of the squares of several vectors.
The function computes scale\_new and sumsq\_new such that
```
scale_new^2 * sumsq_new = x[0]^2 + x[1]^2 + ... x[m-1]^2 + scale_old^2 * sumsq_old
```
where, on entry, `scale` and `sumsq` contain `scale_old` and `sumsq_old`, respectively, and on exit, `scale` and `sumsq` contain `scale_new` and `sumsq_new`, respectively.
**Note:** This function attempts to mimic the algorithm for computing the Frobenius norm in the netlib LAPACK routine `?lassq()`.
---
#### getsc
```c
void bli_getsc
(
ctype* chi,
double* zeta_r,
double* zeta_i
);
```
Copy the real and imaginary values from the scalar object `chi` to `zeta_r` and `zeta_i`. If `chi` is stored as a real type, then `zeta_i` is set to zero. (If `chi` is stored in single precision, the corresponding elements are typecast/promoted during the copy.)
---
#### getijv
```c
err_t bli_?getijv
(
dim_t i,
ctype* x, incx,
double* ar,
double* ai
);
```
Copy the real and imaginary values at the `i`th element of vector `x` to `ar` and `ai`. For real domain invocations, only `ar` is overwritten and `ai` is left unchanged. (If `x` contains elements stored in single precision, the corresponding elements are typecast/promoted during the copy.)
Note that the object-based analogue of [getijv](BLISObjectAPI.md#getijv) does bounds checking of the vector element offset `i` against the vector length while the typed functions specified above do not (since the vector length is not given).
---
#### getijm
```c
err_t bli_?getijm
(
dim_t i,
dim_t j,
ctype* b, inc_t rs_b, inc_t cs_b,
double* ar,
double* ai
);
```
Copy the real and imaginary values at the (`i`,`j`) element of object `b` to `ar` and `ai`. For real domain invocations, only `ar` is overwritten and `ai` is left unchanged. (If `b` contains elements stored in single precision, the corresponding elements are typecast/promoted during the copy.)
Note that the object-based analogue of [getijm](BLISObjectAPI.md#getijm) does bounds checking of the matrix element offsets (`i`,`j`) against the matrix dimensions while the typed functions specified above do not (since the matrix dimensions are not given).
---
#### setsc
```c
void bli_setsc
(
double* zeta_r,
double* zeta_i,
ctype* chi
);
```
Copy real and imaginary values `zeta_r` and `zeta_i` to the scalar object `chi`. If `chi` is stored as a real type, then `zeta_i` is ignored. (If `chi` is stored in single precision, the contents are typecast/demoted during the copy.)
---
#### setijv
```c
err_t bli_?setijv
(
double ar,
double ai,
dim_t i,
ctype* x, incx
);
```
Copy real and imaginary values `ar` and `ai` to the `i`th element of vector object `x`. For real domain invocations, only `ar` is copied and `ai` is ignored. (If `x` contains elements stored in single precision, the corresponding elements are typecast/demoted during the copy.)
Note that the object-based analogue of [setijv](BLISObjectAPI.md#setijv) does bounds checking of the vector element offset `i` against the vector length while the typed functions specified above do not (since the vector length is not given).
---
#### setijm
```c
err_t bli_?setijm
(
double ar,
double ai,
dim_t i,
dim_t j,
ctype* b, inc_t rs_b, inc_t cs_b
);
```
Copy real and imaginary values `ar` and `ai` to the (`i`,`j`) element of object `b`. For real domain invocations, only `ar` is copied and `ai` is ignored. (If `b` contains elements stored in single precision, the corresponding elements are typecast/demoted during the copy.)
Note that the object-based analogue of [setijm](BLISObjectAPI.md#setijm) does bounds checking of the matrix element offsets (`i`,`j`) against the matrix dimensions while the typed functions specified above do not (since the matrix dimensions are not given).
---
#### eqsc
```c
void bli_?eqsc
(
conj_t conjchi,
ctype* chi,
ctype* psi,
bool* is_eq
);
```
Perform an element-wise comparison between scalars `chi` and `psi` and store the boolean result in the `bool` pointed to by `is_eq`.
If `conjchi` indicates a conjugation, `chi` will be implicitly conjugated for purposes of the comparision.
---
#### eqv
```c
void bli_?eqv
(
conj_t conjx,
dim_t n,
ctype* x, inc_t incx,
ctype* y, inc_t incy,
bool* is_eq
);
```
Perform an element-wise comparison between length _n_ vectors `x` and `y` and store the boolean result in the `bool` pointed to by `is_eq`.
If `conjx` indicates a conjugation, `x` will be implicitly conjugated for purposes of the comparision.
---
#### eqm
```c
void bli_?eqm
(
doff_t diagoffa,
diag_t diaga,
uplo_t uploa,
trans_t transa,
dim_t m,
dim_t n,
ctype* a, inc_t rs_a, inc_t cs_a,
ctype* b, inc_t rs_b, inc_t cs_b,
bool* is_eq
);
```
Perform an element-wise comparison between matrices `A` and `B` and store the boolean result in the `bool` pointed to by `is_eq`.
Here, `B` is an _m x n_ matrix, `A` is stored as a dense matrix, or lower- or upper-triangular/trapezoidal matrix with arbitrary diagonal offset and unit or non-unit diagonal.
If `diaga` indicates a unit diagonal, the diagonals of both matrices will be ignored for purposes of the comparision.
If `uploa` indicates lower or upper storage, only that part of matrix `A` will be referenced in the comparison.
If `transa` indicates a conjugation and/or transposition, then `A` will be conjugated and/or transposed for purposes of the comparison.
## Level-3 microkernels
**Note:** The `*` in level-3 microkernel function names shown below reflect that there is no exact naming convention required for the microkernels, except that they must begin with `bli_?`. We strongly recommend, however, that the microkernel function names include the name of the microkernel itself. For example, the `gemm` microkernel should be named with the prefix `bli_?gemm_` and the `trsm` microkernels should be named with the prefixes `bli_?trsm_l_` (lower triangular) and `bli_?trsm_u_` (upper triangular).
---
#### gemm microkernel
```c
void bli_?gemm_*
(
dim_t k,
ctype* restrict alpha,
ctype* restrict a1,
ctype* restrict b1,
ctype* restrict beta,
ctype* restrict c11, inc_t rsc, inc_t csc,
auxinfo_t* restrict data,
cntx_t* restrict cntx
);
```
Perform
```
C11 := beta * C11 + alpha * A1 * B1
```
where `C11` is an _MR x NR_ matrix, `A1` is an _MR x k_ "micropanel" matrix stored in packed (column-stored) format, `B1` is a _k x NR_ "micropanel" matrix in packed (row-stored) format, and alpha and beta are scalars. The storage of `C11` is specified by its row and column strides, `rsc` and `csc`.
Please see the [Kernel Guide](KernelsHowTo.md) for more information on the `gemm` microkernel.
---
#### trsm microkernels
```c
void bli_?trsm_l_*
(
ctype* restrict a11,
ctype* restrict b11,
ctype* restrict c11, inc_t rsc, inc_t csc
auxinfo_t* restrict data,
cntx_t* restrict cntx
);
void bli_?trsm_u_*
(
ctype* restrict a11,
ctype* restrict b11,
ctype* restrict c11, inc_t rsc, inc_t csc
auxinfo_t* restrict data,
cntx_t* restrict cntx
);
```
Perform
```
B11 := inv(A11) * B11
C11 := B11
```
where `A11` is an _MR x MR_ lower or upper triangular matrix stored in packed (column-stored) format, `B11` is an _MR x NR_ matrix stored in packed (row-stored) format, and `C11` is an _MR x NR_ matrix stored according to row and column strides `rsc` and `csc`.
Please see the [Kernel Guide](KernelsHowTo.md) for more information on the `trsm` microkernel.
---
#### gemmtrsm microkernels
```c
void bli_?gemmtrsm_l_*
(
dim_t k,
ctype* restrict alpha,
ctype* restrict a10,
ctype* restrict a11,
ctype* restrict b01,
ctype* restrict b11,
ctype* restrict c11, inc_t rs_c, inc_t cs_c,
auxinfo_t* restrict data,
cntx_t* restrict cntx
);
void bli_?gemmtrsm_u_*
(
dim_t k,
ctype* restrict alpha,
ctype* restrict a12,
ctype* restrict a11,
ctype* restrict b21,
ctype* restrict b11,
ctype* restrict c11, inc_t rs_c, inc_t cs_c,
auxinfo_t* restrict data,
cntx_t* restrict cntx
);
```
Perform
```
B11 := alpha * B11 - A10 * B01
B11 := inv(A11) * B11
C11 := B11
```
if `A11` is lower triangular, or
```
B11 := alpha * B11 - A12 * B21
B11 := inv(A11) * B11
C11 := B11
```
if `A11` is upper triangular.
Please see the [Kernel Guide](KernelsHowTo.md) for more information on the `gemmtrsm` microkernel.
# Query function reference
BLIS allows applications to query information about how BLIS was configured. The `bli_info_` API provides several categories of query routines. Most values are returned as a `gint_t`, which is a signed integer. The size of this integer can be queried through a special routine that returns the size in a character string:
```c
char* bli_info_get_int_type_size_str( void );
```
**Note:** All of the `bli_info_` functions are **always** thread-safe, no matter how BLIS was configured.
## General library information
The following routine returns the address the full BLIS version string:
```c
char* bli_info_get_version_str( void );
```
## Specific configuration
The following routine returns a unique ID of type `arch_t` that identifies the current current active configuration:
```c
arch_t bli_arch_query_id( void );
```
This is most useful when BLIS is configured with multiple configurations. (When linking to multi-configuration builds of BLIS, you don't know for sure which configuration will be used until runtime since the configuration-specific parameters are not loaded until after calling a hueristic to detect the hardware--usually based the `CPUID` instruction.)
Once the configuration's ID is known, it can be used to query a string that contains the name of the configuration:
```c
char* bli_arch_string( arch_t id );
```
## General configuration
The following routines return various general-purpose constants that affect the entire framework. All of these settings default to sane values, which can then be overridden by the configuration in [bli\_config.h](ConfigurationHowTo#bli_configh). If they are absent from a particular configuration's `bli_config.h` header file, then the default value is used, as specified in [frame/include/bli_config_macro_defs.h](https://github.com/flame/blis/blob/master/frame/include/bli_config_macro_defs.h).
```c
gint_t bli_info_get_int_type_size( void );
gint_t bli_info_get_num_fp_types( void );
gint_t bli_info_get_max_type_size( void );
gint_t bli_info_get_page_size( void );
gint_t bli_info_get_simd_num_registers( void );
gint_t bli_info_get_simd_size( void );
gint_t bli_info_get_simd_align_size( void );
gint_t bli_info_get_stack_buf_max_size( void );
gint_t bli_info_get_stack_buf_align_size( void );
gint_t bli_info_get_heap_addr_align_size( void );
gint_t bli_info_get_heap_stride_align_size( void );
gint_t bli_info_get_pool_addr_align_size( void );
gint_t bli_info_get_enable_stay_auto_init( void );
gint_t bli_info_get_enable_blas( void );
gint_t bli_info_get_blas_int_type_size( void );
```
## Kernel information
### Micro-kernel implementation type query
The following routines allow the caller to obtain a string that identifies the implementation type of each microkernel that is currently active (ie: part of the current active configuration, as identified bi `bli_arch_query_id()`).
```c
char* bli_info_get_gemm_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_gemmtrsm_l_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_gemmtrsm_u_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_trsm_l_ukr_impl_string( ind_t method, num_t dt )
char* bli_info_get_trsm_u_ukr_impl_string( ind_t method, num_t dt )
```
Possible implementation (ie: the `ind_t method` argument) types are:
* `BLIS_1M`: Implementation based on the 1m method. (This is the default induced method when real domain kernels are present but complex kernels are missing.)
* `BLIS_NAT`: Implementation based on "native" execution (ie: NOT an induced method).
Possible microkernel types (ie: the return values for `bli_info_get_*_ukr_impl_string()`) are:
* `BLIS_REFERENCE_UKERNEL` (`"refrnce"`): This value is returned when the queried microkernel is provided by the reference implementation.
* `BLIS_VIRTUAL_UKERNEL` (`"virtual"`): This value is returned when the queried microkernel is driven by a the "virtual" microkernel provided by an induced method. This happens for any `method` value that is not `BLIS_NAT` (ie: native), but only applies to the complex domain.
* `BLIS_OPTIMIZED_UKERNEL` (`"optimzd"`): This value is returned when the queried microkernel is provided by an implementation that is neither reference nor virtual, and thus we assume the kernel author would deem it to be "optimized". Such a microkernel may not be optimal in the literal sense of the word, but nonetheless is _intended_ to be optimized, at least relative to the reference microkernels.
* `BLIS_NOTAPPLIC_UKERNEL` (`"notappl"`): This value is returned usually when performing a `gemmtrsm` or `trsm` microkernel type query for any `method` value that is not `BLIS_NAT` (ie: native). That is, induced methods cannot be (purely) used on `trsm`-based microkernels because these microkernels perform more a triangular inversion, which is not matrix multiplication.
### Operation implementation type query
The following routines allow the caller to obtain a string that identifies the implementation (`ind_t`) that is currently active (ie: implemented and enabled) for each level-3 operation. Possible implementation types are listed in the section above covering [microkernel implemenation query](BLISTypedAPI.md#microkernel-implementation-type-query).
```c
char* bli_info_get_gemm_impl_string( num_t dt );
char* bli_info_get_hemm_impl_string( num_t dt );
char* bli_info_get_herk_impl_string( num_t dt );
char* bli_info_get_her2k_impl_string( num_t dt );
char* bli_info_get_symm_impl_string( num_t dt );
char* bli_info_get_syrk_impl_string( num_t dt );
char* bli_info_get_syr2k_impl_string( num_t dt );
char* bli_info_get_trmm_impl_string( num_t dt );
char* bli_info_get_trmm3_impl_string( num_t dt );
char* bli_info_get_trsm_impl_string( num_t dt );
```
## Clock functions
---
#### clock
```c
double bli_clock
(
void
);
```
Return the amount of time that has elapsed since some fixed time in the past. The return values of `bli_clock()` typically feature nanosecond precision, though this is not guaranteed.
**Note:** On Linux, `bli_clock()` is implemented in terms of `clock_gettime()` using the `clockid_t` value of `CLOCK_MONOTONIC`. On OS X, `bli_clock` is implemented in terms of `mach_absolute_time()`. And on Windows, `bli_clock` is implemented in terms of `QueryPerformanceFrequency()`. Please see [frame/base/bli_clock.c](https://github.com/flame/blis/blob/master/frame/base/bli_clock.c) for more details.
**Note:** This function is returns meaningless values when BLIS is configured with `--disable-system`.
---
#### clock_min_diff
```c
double bli_clock_min_diff
(
double time_prev_min,
double time_start
);
```
This function computes an intermediate value, `time_diff`, equal to `bli_clock() - time_start`, and then tentatively prepares to return the minimum value of `time_diff` and `time_min`. If that minimum value is extremely small (close to zero), the function returns `time_min` instead.
This function is meant to be used in conjuction with `bli_clock()` for
performance timing within applications--specifically in loops where only
the fastest timing is of interest. For example:
```c
double t_save = DBL_MAX;
for( i = 0; i < 3; ++i )
{
double t = bli_clock();
bli_gemm( ... );
t_save = bli_clock_min_diff( t_save, t );
}
double gflops = ( 2.0 * m * k * n ) / ( t_save * 1.0e9 );
```
This code calls `bli_gemm()` three times and computes the performance, in GFLOPS, of the fastest of the three executions.
---
# Example code
BLIS provides lots of example code in the [examples/tapi](https://github.com/flame/blis/tree/master/examples/tapi) directory of the BLIS source distribution. The example code in this directory is set up like a tutorial, and so we recommend starting from the beginning. Topics include printing vectors and matrices and calling a representative subset of the computational level-1v, -1m, -2, -3, and utility operations documented above. Please read the `README` contained within the `examples/tapi` directory for further details.
|