1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
obj_t a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
obj_t v1, v2;
num_t dt;
dim_t m, n;
inc_t rs, cs;
//
// This file demonstrates the basics of creating objects in BLIS,
// inspecting their basic properties, and printing matrix objects.
//
//
// Example 1: Create an object containing a 4x3 matrix of double-
// precision real elements stored in column-major order.
//
// The matrix dimensions are m = 4 and n = 3. We choose to use column
// storage (often called column-major storage) and thus we specify
// that the row stride ("rs" for short) argument is 1 and the column
// stride ("cs" for short) argument is equal to m = 4. In column
// storage, cs is known as the leading dimension.
dt = BLIS_DOUBLE; m = 4; n = 3;
rs = 1; cs = 4;
bli_obj_create( dt, m, n, rs, cs, &a1 );
// If cs is greater than m, then extra rows (in this case, two) will
// be allocated beyond the lower edge of the matrix. Sometimes this
// is desireable for alignment purposes.
dt = BLIS_DOUBLE; m = 4; n = 3;
rs = 1; cs = 6;
bli_obj_create( dt, m, n, rs, cs, &a2 );
//
// Example 2: Create an object containing a 4x3 matrix of double-
// precision real elements stored in row-major order.
//
// Here, we choose to use row storage (often called row-major storage)
// and thus we specify that the cs is 1 and rs is equal to n = 3. In
// row storage, the leading dimension corresponds to rs.
dt = BLIS_DOUBLE; m = 4; n = 3;
rs = 3; cs = 1;
bli_obj_create( dt, m, n, rs, cs, &a3 );
// As with the second example, we can cause extra columns (in this
// case, five) to be allocated beyond the right edge of the matrix.
dt = BLIS_DOUBLE; m = 4; n = 3;
rs = 8; cs = 1;
bli_obj_create( dt, m, n, rs, cs, &a4 );
//
// Example 3: Create objects using other floating-point datatypes.
//
// Examples of using the other floating-point datatypes.
m = 4; n = 3;
rs = 1; cs = 4;
bli_obj_create( BLIS_FLOAT, m, n, rs, cs, &a5 );
bli_obj_create( BLIS_SCOMPLEX, m, n, rs, cs, &a6 );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &a7 );
//
// Example 4: Create objects using default (column) storage so that
// we avoid having to specify rs and cs manually.
//
// Specifying the row and column strides as zero, as is done here, is
// a shorthand request for the default storage scheme, which is
// currently (and always has been) column storage. When requesting the
// default storage scheme with rs = cs = 0, BLIS may insert additional
// padding for alignment purposes. So, the 3x8 matrix object created
// below may end up having a row stride that is greater than 3. When
// in doubt, query the value!
bli_obj_create( BLIS_FLOAT, 3, 5, 0, 0, &a8 );
//
// Example 5: Inspect object fields after creation to expose
// possible alignment/padding.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Let's inspect the amount of padding inserted for alignment. Note
// the difference between the m dimension and the column stride.
printf( "datatype %s\n", bli_dt_string( bli_obj_dt( &a8 ) ) );
printf( "datatype size %d bytes\n", ( int )bli_dt_size( bli_obj_dt( &a8 ) ) );
printf( "m dim (# of rows): %d\n", ( int )bli_obj_length( &a8 ) );
printf( "n dim (# of cols): %d\n", ( int )bli_obj_width( &a8 ) );
printf( "row stride: %d\n", ( int )bli_obj_row_stride( &a8 ) );
printf( "col stride: %d\n", ( int )bli_obj_col_stride( &a8 ) );
//
// Example 6: Inspect object fields after creation of other floating-
// point datatypes.
//
printf( "\n#\n# -- Example 6 --\n#\n\n" );
bli_obj_create( BLIS_DOUBLE, 3, 5, 0, 0, &a9 );
bli_obj_create( BLIS_SCOMPLEX, 3, 5, 0, 0, &a10);
bli_obj_create( BLIS_DCOMPLEX, 3, 5, 0, 0, &a11 );
printf( "datatype %s\n", bli_dt_string( bli_obj_dt( &a9 ) ) );
printf( "datatype size %d bytes\n", ( int )bli_dt_size( bli_obj_dt( &a9 ) ) );
printf( "m dim (# of rows): %d\n", ( int )bli_obj_length( &a9 ) );
printf( "n dim (# of cols): %d\n", ( int )bli_obj_width( &a9 ) );
printf( "row stride: %d\n", ( int )bli_obj_row_stride( &a9 ) );
printf( "col stride: %d\n", ( int )bli_obj_col_stride( &a9 ) );
printf( "\n" );
printf( "datatype %s\n", bli_dt_string( bli_obj_dt( &a10 ) ) );
printf( "datatype size %d bytes\n", ( int )bli_dt_size( bli_obj_dt( &a10 ) ) );
printf( "m dim (# of rows): %d\n", ( int )bli_obj_length( &a10 ) );
printf( "n dim (# of cols): %d\n", ( int )bli_obj_width( &a10 ) );
printf( "row stride: %d\n", ( int )bli_obj_row_stride( &a10 ) );
printf( "col stride: %d\n", ( int )bli_obj_col_stride( &a10 ) );
printf( "\n" );
printf( "datatype %s\n", bli_dt_string( bli_obj_dt( &a11 ) ) );
printf( "datatype size %d bytes\n", ( int )bli_dt_size( bli_obj_dt( &a11 ) ) );
printf( "m dim (# of rows): %d\n", ( int )bli_obj_length( &a11 ) );
printf( "n dim (# of cols): %d\n", ( int )bli_obj_width( &a11 ) );
printf( "row stride: %d\n", ( int )bli_obj_row_stride( &a11 ) );
printf( "col stride: %d\n", ( int )bli_obj_col_stride( &a11 ) );
//
// Example 7: Initialize an object's elements to random values and then
// print the matrix.
//
printf( "\n#\n# -- Example 7 --\n#\n\n" );
// We can set matrices to random values. The default behavior of
// bli_randm() is to use random values on the internval [-1,1].
bli_randm( &a9 );
// And we can also print the matrices associated with matrix objects.
// Notice that the third argument is a printf()-style format specifier.
// Any valid printf() format specifier can be passed in here, but you
// still need to make sure that the specifier makes sense for the data
// being printed. For example, you shouldn't use "%d" when printing
// elements of type 'float'.
bli_printm( "matrix 'a9' contents:", &a9, "%4.1f", "" );
//
// Example 8: Randomize and then print from an object containing a complex
// matrix.
//
printf( "\n#\n# -- Example 8 --\n#\n\n" );
// When printing complex matrices, the same format specifier gets used
// for both the real and imaginary parts.
bli_randm( &a11 );
bli_printm( "matrix 'a11' contents (complex):", &a11, "%4.1f", "" );
//
// Example 9: Create, randomize, and print vector objects.
//
printf( "\n#\n# -- Example 9 --\n#\n\n" );
// Now let's create two vector objects--a row vector and a column vector.
// (A vector object is like a matrix object, except that it has at least
// one unit dimension (equal to one).
bli_obj_create( BLIS_DOUBLE, 4, 1, 0, 0, &v1 );
bli_obj_create( BLIS_DOUBLE, 1, 6, 0, 0, &v2 );
// If we know the object is a vector, we can use bli_randv(), though
// bli_randm() would work just as well, since any vector is also a matrix.
bli_randv( &v1 );
bli_randv( &v2 );
// We can print vectors, too.
bli_printm( "vector 'v1' contents:", &v1, "%5.1f", "" );
bli_printm( "vector 'v2' contents:", &v2, "%5.1f", "" );
// Free all of the objects we created.
bli_obj_free( &a1 );
bli_obj_free( &a2 );
bli_obj_free( &a3 );
bli_obj_free( &a4 );
bli_obj_free( &a5 );
bli_obj_free( &a6 );
bli_obj_free( &a7 );
bli_obj_free( &a8 );
bli_obj_free( &a9 );
bli_obj_free( &a10 );
bli_obj_free( &a11 );
bli_obj_free( &v1 );
bli_obj_free( &v2 );
return 0;
}
|