1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
obj_t norm1, normi, normf;
obj_t x, y, a, b, c, d, e, f, g;
num_t dt;
dim_t m, n;
inc_t rs, cs;
//
// This file demonstrates working with vector and matrix objects in the
// context of various utility operations.
//
//
// Example 1: Compute various vector norms.
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// Create a few matrices to work with.
m = 1; n = 5; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &x );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &y );
// Let's also create some scalar objects to hold the norms. Note that when
// computing the norm alpha of a vector 'x', the datatype of alpha must be
// equal to the real projection of the datatype of 'x'.
dt = BLIS_DOUBLE;
bli_obj_create_1x1( dt, &norm1 );
bli_obj_create_1x1( dt, &normi );
bli_obj_create_1x1( dt, &normf );
// Initialize the vectors to random values.
bli_randv( &x );
bli_randv( &y );
bli_printm( "x:", &x, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'x'.
bli_norm1v( &x, &norm1 );
bli_normiv( &x, &normi );
bli_normfv( &x, &normf );
bli_printm( "x: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "x: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "x: frobenius norm:", &normf, "%4.1f", "" );
bli_printm( "y:", &y, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'y'. Note that we
// can reuse the same scalars from before for computing norms of
// dcomplex matrices, since the real projection of dcomplex is double.
bli_norm1v( &y, &norm1 );
bli_normiv( &y, &normi );
bli_normfv( &y, &normf );
bli_printm( "y: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "y: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "y: frobenius norm:", &normf, "%4.1f", "" );
//
// Example 2: Compute various matrix norms.
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Create a few matrices to work with.
m = 5; n = 6; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &a );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &b );
// Initialize the matrices to random values.
bli_randm( &a );
bli_randm( &b );
bli_printm( "a:", &a, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'a'.
bli_norm1m( &a, &norm1 );
bli_normim( &a, &normi );
bli_normfm( &a, &normf );
bli_printm( "a: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "a: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "a: frobenius norm:", &normf, "%4.1f", "" );
bli_printm( "b:", &b, "%4.1f", "" );
// Compute the one-norm of 'b'.
bli_norm1m( &b, &norm1 );
bli_normim( &b, &normi );
bli_normfm( &b, &normf );
bli_printm( "b: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "b: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "b: frobenius norm:", &normf, "%4.1f", "" );
//
// Example 3: Make a real matrix explicitly symmetric (or Hermitian).
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create a few matrices to work with.
m = 4; n = 4; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &c );
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &d );
// Initialize all of 'c' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &c );
// Set the structure and uplo of 'c'.
bli_obj_set_struc( BLIS_SYMMETRIC, &c );
bli_obj_set_uplo( BLIS_LOWER, &c );
// Randomize the lower triangle of 'c'.
bli_randm( &c );
bli_printm( "c (initial state):", &c, "%4.1f", "" );
// mksymm on a real matrix transposes the stored triangle into the
// unstored triangle, making the matrix densely symmetric.
bli_mksymm( &c );
bli_printm( "c (after mksymm on lower triangle):", &c, "%4.1f", "" );
// Digression: Most people think only of complex matrices as being able
// to be complex. However, in BLIS, we define Hermitian operations on
// real matrices, too--they are simply equivalent to the corresponding
// symmetric operation. For example, when we make a real matrix explicitly
// Hermitian, the result is indistinguishable from making it symmetric.
// Initialize all of 'd' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &d );
bli_obj_set_struc( BLIS_HERMITIAN, &d );
bli_obj_set_uplo( BLIS_LOWER, &d );
// Randomize the lower triangle of 'd'.
bli_randm( &d );
bli_printm( "d (initial state):", &d, "%4.1f", "" );
// mkherm on a real matrix behaves the same as mksymm, as there are no
// imaginary elements to conjugate.
bli_mkherm( &d );
bli_printm( "d (after mkherm on lower triangle):", &d, "%4.1f", "" );
//
// Example 4: Make a complex matrix explicitly symmetric or Hermitian.
//
printf( "\n#\n# -- Example 4 --\n#\n\n" );
// Create a few matrices to work with.
m = 4; n = 4; rs = 0; cs = 0;
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &e );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &f );
// Initialize all of 'e' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &e );
// Set the structure and uplo of 'e'.
bli_obj_set_struc( BLIS_SYMMETRIC, &e );
bli_obj_set_uplo( BLIS_UPPER, &e );
// Randomize the upper triangle of 'e'.
bli_randm( &e );
bli_printm( "e (initial state):", &e, "%4.1f", "" );
// mksymm on a complex matrix transposes the stored triangle into the
// unstored triangle.
bli_mksymm( &e );
bli_printm( "e (after mksymm):", &e, "%4.1f", "" );
// Initialize all of 'f' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &f );
// Set the structure and uplo of 'f'.
bli_obj_set_struc( BLIS_HERMITIAN, &f );
bli_obj_set_uplo( BLIS_UPPER, &f );
// Randomize the upper triangle of 'f'.
bli_randm( &f );
bli_printm( "f (initial state):", &f, "%4.1f", "" );
// mkherm on a complex matrix transposes and conjugates the stored
// triangle into the unstored triangle.
bli_mkherm( &f );
bli_printm( "f (after mkherm):", &f, "%4.1f", "" );
//
// Example 5: Make a real matrix explicitly triangular.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Create a few matrices to work with.
m = 5; n = 5; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &g );
// Initialize all of 'g' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &g );
// Set the structure and uplo of 'g'.
bli_obj_set_struc( BLIS_TRIANGULAR, &g );
bli_obj_set_uplo( BLIS_LOWER, &g );
// Randomize the lower triangle of 'g'.
bli_randm( &g );
bli_printm( "g (initial state):", &g, "%4.1f", "" );
// mktrim does not explicitly copy any data, since presumably the stored
// triangle already contains the data of interest. However, mktrim does
// explicitly writes zeros to the unstored region.
bli_mktrim( &g );
bli_printm( "g (after mktrim):", &g, "%4.1f", "" );
// Free the objects.
bli_obj_free( &norm1 );
bli_obj_free( &normi );
bli_obj_free( &normf );
bli_obj_free( &x );
bli_obj_free( &y );
bli_obj_free( &a );
bli_obj_free( &b );
bli_obj_free( &c );
bli_obj_free( &d );
bli_obj_free( &e );
bli_obj_free( &f );
bli_obj_free( &g );
return 0;
}
// -----------------------------------------------------------------------------
|