1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
dim_t m, n, k;
inc_t rsa, csa;
inc_t rsb, csb;
inc_t rsc, csc;
double* a;
double* b;
double* c;
double alpha, beta;
// Initialize some basic constants.
double zero = 0.0;
double one = 1.0;
double two = 2.0;
//
// This file demonstrates level-3 operations.
//
//
// Example 1: Perform a general matrix-matrix multiply (gemm) operation.
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 4; n = 5; k = 3;
rsc = 1; csc = m;
rsa = 1; csa = m;
rsb = 1; csb = k;
c = malloc( m * n * sizeof( double ) );
a = malloc( m * k * sizeof( double ) );
b = malloc( k * n * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
beta = 1.0;
// Initialize the matrix operands.
bli_drandm( 0, BLIS_DENSE, m, k, a, rsa, csa );
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
k, n, &one, b, rsb, csb );
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &zero, c, rsc, csc );
bli_dprintm( "a: randomized", m, k, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "b: set to 1.0", k, n, b, rsb, csb, "%4.1f", "" );
bli_dprintm( "c: initial value", m, n, c, rsc, csc, "%4.1f", "" );
// c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
bli_dgemm( BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE,
m, n, k, &alpha, a, rsa, csa, b, rsb, csb,
&beta, c, rsc, csc );
bli_dprintm( "c: after gemm", m, n, c, rsc, csc, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( b );
free( c );
//
// Example 1b: Perform a general matrix-matrix multiply (gemm) operation
// with the left input operand (matrix A) transposed.
//
printf( "\n#\n# -- Example 1b --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 4; n = 5; k = 3;
rsc = 1; csc = m;
rsa = 1; csa = k;
rsb = 1; csb = k;
c = malloc( m * n * sizeof( double ) );
a = malloc( k * m * sizeof( double ) );
b = malloc( k * n * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
beta = 1.0;
// Initialize the matrix operands.
bli_drandm( 0, BLIS_DENSE, k, m, a, rsa, csa );
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
k, n, &one, b, rsb, csb );
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &zero, c, rsc, csc );
bli_dprintm( "a: randomized", k, m, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "b: set to 1.0", k, n, b, rsb, csb, "%4.1f", "" );
bli_dprintm( "c: initial value", m, n, c, rsc, csc, "%4.1f", "" );
// c := beta * c + alpha * a^T * b, where 'a', 'b', and 'c' are general.
bli_dgemm( BLIS_TRANSPOSE, BLIS_NO_TRANSPOSE,
m, n, k, &alpha, a, rsa, csa, b, rsb, csb,
&beta, c, rsc, csc );
bli_dprintm( "c: after gemm", m, n, c, rsc, csc, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( b );
free( c );
//
// Example 2: Perform a symmetric rank-k update (syrk) operation.
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 5; k = 3;
rsc = 1; csc = m;
rsa = 1; csa = m;
c = malloc( m * m * sizeof( double ) );
a = malloc( m * k * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
// Initialize the matrix operands.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, m, &zero, c, rsc, csc );
bli_drandm( 0, BLIS_DENSE, m, k, a, rsa, csa );
// Randomize the lower triangle of 'c'.
bli_drandm( 0, BLIS_LOWER, m, n, c, rsc, csc );
bli_dprintm( "a: set to random values", m, k, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "c: initial value (zeros in upper triangle)", m, m, c, rsc, csc, "%4.1f", "" );
// c := c + alpha * a * a^T, where 'c' is symmetric and lower-stored.
bli_dsyrk( BLIS_LOWER, BLIS_NO_TRANSPOSE,
m, k, &alpha, a, rsa, csa,
&beta, c, rsc, csc );
bli_dprintm( "c: after syrk", m, m, c, rsc, csc, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( c );
//
// Example 3: Perform a symmetric matrix-matrix multiply (symm) operation.
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 5; n = 6;
rsc = 1; csc = m;
rsa = 1; csa = m;
rsb = 1; csb = m;
c = malloc( m * n * sizeof( double ) );
a = malloc( m * m * sizeof( double ) );
b = malloc( m * n * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
beta = 1.0;
// Initialize matrices 'b' and 'c'.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &one, b, rsb, csb );
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &zero, c, rsc, csc );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, m, &zero, a, rsa, csa );
// Randomize the upper triangle of 'a'.
bli_drandm( 0, BLIS_UPPER, m, m, a, rsa, csa );
bli_dprintm( "a: randomized (zeros in lower triangle)", m, m, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "b: set to 1.0", m, n, b, rsb, csb, "%4.1f", "" );
bli_dprintm( "c: initial value", m, n, c, rsc, csc, "%4.1f", "" );
// c := beta * c + alpha * a * b, where 'a' is symmetric and upper-stored.
bli_dsymm( BLIS_LEFT, BLIS_UPPER, BLIS_NO_CONJUGATE, BLIS_NO_TRANSPOSE,
m, n, &alpha, a, rsa, csa, b, rsb, csb,
&beta, c, rsc, csc );
bli_dprintm( "c: after symm", m, n, c, rsc, csc, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( b );
free( c );
//
// Example 4: Perform a triangular matrix-matrix multiply (trmm) operation.
//
printf( "\n#\n# -- Example 4 --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 5; n = 4;
rsa = 1; csa = m;
rsb = 1; csb = m;
a = malloc( m * m * sizeof( double ) );
b = malloc( m * n * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
// Initialize matrix 'b'.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &one, b, rsb, csb );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, m, &zero, a, rsa, csa );
// Randomize the lower triangle of 'a'.
bli_drandm( 0, BLIS_LOWER, m, m, a, rsa, csa );
bli_dprintm( "a: randomized (zeros in upper triangle)", m, m, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "b: initial value", m, n, b, rsb, csb, "%4.1f", "" );
// b := alpha * a * b, where 'a' is triangular and lower-stored.
bli_dtrmm( BLIS_LEFT, BLIS_LOWER, BLIS_NONUNIT_DIAG, BLIS_NO_TRANSPOSE,
m, n, &alpha, a, rsa, csa, b, rsb, csb );
bli_dprintm( "b: after trmm", m, n, b, rsb, csb, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( b );
//
// Example 5: Perform a triangular solve with multiple right-hand sides
// (trsm) operation.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Create some matrix and vector operands to work with.
m = 5; n = 4;
rsa = 1; csa = m;
rsb = 1; csb = m;
rsc = 1; csc = m;
a = malloc( m * m * sizeof( double ) );
b = malloc( m * n * sizeof( double ) );
c = malloc( m * n * sizeof( double ) );
// Set the scalars to use.
alpha = 1.0;
// Initialize matrix 'b'.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, n, &one, b, rsb, csb );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_dsetm( BLIS_NO_CONJUGATE, 0, BLIS_NONUNIT_DIAG, BLIS_DENSE,
m, m, &zero, a, rsa, csa );
// Randomize the lower triangle of 'a'.
bli_drandm( 0, BLIS_LOWER, m, m, a, rsa, csa );
// Load the diagonal. By setting the diagonal to something of greater
// absolute value than the off-diagonal elements, we increase the odds
// that the matrix is not singular (singular matrices have no inverse).
bli_dshiftd( 0, m, m, &two, a, rsa, csa );
bli_dprintm( "a: randomized (zeros in upper triangle)", m, m, a, rsa, csa, "%4.1f", "" );
bli_dprintm( "b: initial value", m, n, b, rsb, csb, "%4.1f", "" );
// solve a * x = alpha * b, where 'a' is triangular and lower-stored, and
// overwrite b with the solution matrix x.
bli_dtrsm( BLIS_LEFT, BLIS_LOWER, BLIS_NONUNIT_DIAG, BLIS_NO_TRANSPOSE,
m, n, &alpha, a, rsa, csa, b, rsb, csb );
bli_dprintm( "b: after trmm", m, n, b, rsb, csb, "%4.1f", "" );
// We can confirm the solution by comparing the product of a and x to the
// original value of b.
bli_dcopym( 0, BLIS_NONUNIT_DIAG, BLIS_DENSE, BLIS_NO_TRANSPOSE,
m, n, b, rsb, csb, c, rsc, csc );
bli_dtrmm( BLIS_LEFT, BLIS_LOWER, BLIS_NONUNIT_DIAG, BLIS_NO_TRANSPOSE,
m, n, &alpha, a, rsa, csa, c, rsc, csc );
bli_dprintm( "c: should equal initial value of b", m, n, c, rsc, csc, "%4.1f", "" );
// Free the memory obtained via malloc().
free( a );
free( b );
free( c );
return 0;
}
// -----------------------------------------------------------------------------
|