1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
|
#!/usr/bin/python
"""
Copyright 2007 Stutzbach Enterprises, LLC (daniel@stutzbachenterprises.com)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Motivation and Design Goals
---------------------------
The goal of this module is to provide a list-like type that has
better asymptotic performance than Python lists, while maintaining
similar performance for lists with few items.
I was driven to write this type by the work that I do. I frequently
need to work with large lists, and run into efficiency problems when I
need to insert or delete elements in the middle of the list. I'd like
a type that looks, acts, and quacks like a Python list while offering
good asymptotic performance for all common operations.
A could make a type that has good asymptotic performance, but poor
relative performance on small lists. That'd be pretty easy to achieve
with, say, red-black trees. While sometimes I do need good asymptotic
performance, other times I need the speed of Python's array-based
lists for operating on a small list in a tight loop. I don't want to
have to think about which one to use. I want one type with good
performance in both cases.
In other words, it should "just work".
I don't propose replacing the existing Python list implementation. I
am neither that ambitious, and I appreciate how tightly optimized and
refined the existing list implementation is. I would like to see this
type someday included in Python's collections module, so users with
similar needs can make use of it.
The data structure I've created to solve the problem is a variation of
a B+Tree, hence I call it the "BList". It has good asymptotic
performance for all operations, even for some operations you'd expect
to still be O(N). For example:
>>> from blist import BList
>>> n = 10000000 # n = 10 million
>>> b = BList([0]) # O(1)
>>> bigb = b * n # O(log n)
>>> bigb2 = bigb[1:-1] # O(log n)
>>> del bigb2[5000000] # O(log n)
With BLists, even taking a slice (line 4) takes O(log n) time. This
wonderful feature is because BLists can implement copy-on-write. More
on that later.
Thus far, I have only implemented a Python version of BList, as a
working prototype. Obviously, the Python implementation isn't very
efficient at all, but it serves to illustrate the important algorithms.
Later, I plan to implement a C version, which should have comparable
performance to ordinary Python lists when operating on small lists.
The Python version of BLists only outperforms Python lists when the
lists are VERY large.
Basic Idea
----------
BLists are based on B+Trees are a dictionary data structure where each
element is a (key, value) pair and the keys are kept in sorted order.
B+Trees internally use a tree representation. All data is stored in
the leaf nodes of the tree, and all leaf nodes are at the same level.
Unlike binary trees, each node has a large number of children, stored
as an array of references within the node. The B+Tree operations ensure
that each node always has between "limit/2" and "limit" children
(except the root which may have between 0 and "limit" children). When
a B+Tree has fewer than "limit/2" elements, they will all be contained
in a single node (the root).
Wikipedia has a diagram that may be helpful for understanding the
basic structure of a B+Tree:
http://en.wikipedia.org/wiki/B+_tree
Of course, we don't want a dictionary. We want a list.
In BLists, the "key" is implicit: it's the in-order location of the value.
Instead of keys, each BList node maintains a count of the total number
of data elements beneath it in the tree. This allows walking the tree
efficiently by keeping track of how far we've moved when passing by a
child node. The tree structure gives us O(log n) for most operations,
asymptotically.
When the BList has fewer than "limit/2" data elements, they are all
stored in the root node. In other words, for small lists a BList
essentially reduces to an array. It should have almost identical
performance to a regular Python list, as only one or two extra if()
statements will be needed per method call.
Adding elements
---------------
Elements are inserted recursively. Each node determines which child
node contains the insertion point, and calls the insertion routine of
that child.
When we add elements to a BList node, the node may overflow (i.e.,
have more than "limit" elements). Instead of overflowing, the node
creates a new BList node and gives half of its elements to the new
node. When the inserting function returns, the function informs its
parent about the new sibling. This causes the parent to add the new
node as a child. If this causes the parent to overflow, it creates a
sibling of its own, notifies its parent, and so on.
When the root of the tree overflows, it must increase the depth of the
tree. The root creates two new children and splits all of its former
references between these two children (i.e., all former children are now
grandchildren).
Removing an element
-------------------
Removing an element is also done recursively. Each node determines
which child node contains the element to be removed, and calls the
removal routine of that child.
Removing an element may cause an underflow (i.e., fewer than "limit/2"
elements). It's the parent's job to check if a child has underflowed
after any operation that might cause an underflow. The parent must
then repair the child, either by borrowing elements from one of the
child's sibling or merging the child with one of its sibling. It the
parent performs a merge, this may also cause its parent to underflow.
If a node has only one element, the tree collapses. The node replaces
its one child with its grandchildren. When removing a single element,
this can only happen at the root.
Removing a range
----------------
The __delslice__ method to remove a range of elements is the most
complex operation for a BList to perform. The first step is to locate
the common parent of all the elements to be removed. The parent
deletes any children who will be completely deleted (i.e., they are
entirely within the range to be deleted). The parent also has to deal
with two children who may be partially deleted: they contain the left
and right boundaries of the deletion range.
The parent calls the deletion operation recursively on these two
children. When the call returns, the children must return a valid
BList, but they may be in an underflow state, and, worse, they may
have needed to collapse the tree. To make life a little easier, the
children return an integer indicating how many levels of the tree
collapsed (if any). The parent now has two adjacent subtrees of
different heights that need to be put back into the main tree (to keep
it balanced).
To accomplish this goal, we use a merge-tree operation, defined below.
The parent merges the two adjacent subtrees into a single subtree,
then merges the subtree with one of its other children. If it has no
other children, then the parent collapses to become the subtree and
indicates to its parent the total level of collapse.
Merging subtrees
----------------
The __delslice__ method needs a way to merge two adjacent subtrees of
potentially different heights. Because we only need to merge *adjacent*
subtrees, we don't have to handle inserting a subtree into the middle of
another. There are only two cases: the far-left and the far-right. If
the two subtrees are the same height, this is a pretty simple operation where
we join their roots together. If the trees are different heights, we
merge the smaller into the larger as follows. Let H be the difference
in their heights. Then, recurse through the larger tree by H levels
and insert the smaller subtree there.
Retrieving a range and copy-on-write
------------------------------------
One of the most powerful features of BLists is the ability to support
copy-on-write. Thus far we have described a BLists as a tree
structure where parents contain references to their children. None of
the basic tree operations require the children to maintain references
to their parents or siblings. Therefore, it is possible for a child
to have *multiple parents*. The parents can happily share the child
as long as they perform read-only operations on it. If a parent wants
to modify a child in any way, it first checks the child's reference
count. If it is 1, the parent has the only reference and can proceed.
Otherwise, the parent must create a copy of the child, and relinquish
its reference to the child.
Creating a copy of a child doesn't implicitly copy the child's
subtree. It just creates a new node with a new reference to the
child. In other words, the child and the copy are now joint parents
of their children.
This assumes that no other code will gain references to internal BList
nodes. The internal nodes are never exposed to the user, so this is a
safe assumption. In the worst case, if the user manages to gain a
reference to an internal BList node (such as through the gc module),
it will just prevent the BList code from modifying that node. It will
create a copy instead. User-visible nodes (i.e., the root of a tree)
have no parents and are never shared children.
Why is this copy-on-write operation so useful?
Consider the common idiom of performing an operation on a slice of a
list. Normally, this requires making a copy of that region of the
list, which is expensive if the region is large. With copy-on-write,
__getslice__ takes logarithmic time and logarithmic memory.
As a fun but slightly less practical example, ever wanted to make
REALLY big lists? Copy-on-write also allows for a logarithmic time
and logarithmic memory implementation of __mul__.
>>> little_list = BList([0])
>>> big_list = little_list * 2**512 <-- 220 milliseconds
>>> print big_list.__len__()
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096
(iterating over big_list is not recommended)
Comparison of cost of operations with list()
---------------------------------------------
n is the size of "self", k is the size of the argument. For slice
operations, k is the length of the slice. For __mul__, k is the value
of the argument.
Operation list BList
--------------- ------------ -----------------------
init from seq O(k) O(k)
copy O(k) O(1)
append O(1) O(log n)
insert O(n) O(log n)
__mul__ O(n*k) O(log k)
__delitem__ O(n) O(log n)
__len__ O(1) O(1)
iteration O(n) O(n)
__getslice__ O(k) O(log n)
__delslice__ O(n) O(log n + k)
__setslice__ O(n+k) O(log n + log k) [1]
extend O(k) O(log n + log k) [1]
__sort__ O(n*log n) O(n*log n) [2]
index O(k) O(log n + k)
remove O(n) O(n)
count O(n) O(n)
extended slicing O(k) O(k*log n)
__cmp__ O(min(n,k)) O(min(n,k))
[1]: Plus O(k) if the sequence being added is not also a BList
[2]: list.__sort__ requires O(n) worst-case extra memory, while BList.__sort
requires only (log n) extra memory
For BLists smaller than "limit" elements, each operation essentially
reduces to the equivalent list operation, so there is little-to-no
overhead for the common case of small lists.
Implementation Details
======================
Structure
---------
Each node has four member variables:
leaf: true if this node is a leaf node (has user data as children),
false if this node is an interior node (has other nodes as children)
children: an array of references to the node's children
n: the total number of user data elements below the node.
equal to len(children) for leaf nodes
refcount: None for a root node,
otherwise, the number of other nodes with references to this node
(i.e., parents)
Global Constants
----------------
limit: the maximum size of .children, must be even and >= 8
half: limit//2, the minimum size of .children for a valid node,
other than the root
Definitions
-----------
- The only user-visible node is the root node.
- All leaf nodes are at the same height in the tree.
- If the root node has exactly one child, the root node must be a leaf node.
- Nodes never maintain references to their parents or siblings, only to
their children.
- Users call methods of the user-node, which may call methods of its
children, who may call their children recursively.
- A node's user-visible elements are numbered from 0 to self.n-1. These are
called "positions".
- A node's children are numbered 0 to len(self.children)-1. These are
called "indexes" and should not be confused with positions.
- Completely private functions (called via self.) may temporarily
violate these invariants.
- Functions exposed to the user must ensure these invariants are true
when they return.
- Some functions are visible to the parent of a child node. When
these functions return, the invariants must be true as if the child
were a root node.
Conventions
-----------
- Function that may be called by either users or the object's parent
either do not begin with underscores, or they begin and end with __.
- A function that may only be called by the object itself begins with
__ and do not end with underscores.
- Functions that may be called by an object's parent, but not by the user,
begin with a single underscore.
Other rules
-----------
- If a function may cause a BList to overflow, the function has the
following return types:
- None, if the BList did not overflow
- Otherwise, a valid BList subtree containing a new right-hand sibling
for the BList that was called.
- BList objects may modify their children if the child's .refcount is
1. If the .refcount is greater than 1, the child is shared by another
parent. The object must copy the child, decrement the child's reference
counter, and modify the copy instead.
- If an interior node has only one child, before returning it must
collapse the tree so it takes on the properties of its child. This
may mean the interior node becomes a leaf.
- An interior node may return with no children. The parent must then
remove the interior node from the parent's children.
- If a function may cause an interior node to collapse, it must have
the following return types:
- 0, if the BList did not collapse, or if it is now empty (self.n == 0)
- A positive integer indicating how many layers have collapsed (i.e., how
much shorter the subtree is compared to before the function call).
- If a user-visible function does not modify the BList, the BList's
internal structure must not change. This is important for
supporting iterators.
Observations
------------
- User-nodes always have a refcount of at least 1
- User-callable methods may not cause the reference counter to decrement.
- If a parent calls a child's method that may cause the child to
underflow, the parent must detect the underflow and merge the child
before returning.
Pieces not implemented here that will be needed in a C version
--------------------------------------------------------------
- __deepcopy__
- support for pickling
- container-type support for the garbage collector
Suspected Bugs:
- None currently, but needs more testing
- Passes test_list.py :-)
User-visible Differences from list():
- If you modify the list in the middle of an iteration and continue
to iterate, the behavior is different. BList iteration could be
implemented the same way as in list, but then iteration would have
O(n * log n) cost instead of O(n). I'm okay with the way it is.
Miscellaneous:
- All of the reference counter stuff is redundant with the reference
counting done internally on Python objects. In C we can just peak
at the reference counter stored in all Python objects.
"""
import copy, types
from itertools import *
########################################################################
# Global constants
limit = 8 # Maximum size, currently low (for testing purposes)
half = limit//2 # Minimum size
assert limit % 2 == 0 # Must be divisible by 2
assert limit >= 8 # The code assumes each block is at least this big
PARANOIA = 2 # Checks reference counters
DEBUG = 1 # Checks correctness
NO_DEBUG = 0 # No checking
debugging_level = NO_DEBUG
leaked_reference = False
########################################################################
# Simulate utility functions from the Python C API. These functions
# help us detect the case where we have a self-referential list and a
# user has asked us to print it...
Py_Repr = []
def Py_ReprEnter(obj):
if obj in Py_Repr: return 1
Py_Repr.append(obj)
return 0
def Py_ReprLeave(obj):
for i in range(len(Py_Repr)-1,-1,-1):
if Py_Repr[i] == obj:
del Py_Repr[i]
break
# Needed for sort
builtin_cmp = cmp
########################################################################
# Decorators are for error-checking and code clarity. They verify
# (most of) the invariances given above. They're replaced with no_op()
# if debugging_level == NO_DEBUG.
def modifies_self(f):
"Decorator for member functions which require write access to self"
def g(self, *args, **kw):
assert self.refcount == 1 or self.refcount is None
rv = f(self, *args, **kw)
assert self.refcount == 1 or not self.refcount, self.refcount
return rv
return g
def parent_callable(f):
"Indicates the member function may be called by the BList's parent"
def g(self, *args, **kw):
#self._check_invariants()
rv = f(self, *args, **kw)
self._check_invariants()
return rv
return g
def user_callable(f):
"Indicates a user callable function"
def g(self, *args, **kw):
assert self.refcount >= 1 or self.refcount is None
refs = self.refcount
self._check_invariants()
rv = f(self, *args, **kw)
assert self.refcount == refs
self._check_invariants()
return rv
return g
def may_overflow(f):
"Indicates the member function may cause an overflow"
def g(self, *args, **kw):
rv = f(self, *args, **kw)
if rv is not None:
assert isinstance(rv, BList)
rv._check_invariants()
self._check_invariants()
return rv
return g
def may_collapse(f):
"Indicates the member function may collapse the subtree"
def g(self, *args, **kw):
#height1 = self._get_height() ## Not reliable just before collapse
rv = f(self, *args, **kw)
#height2 = self._get_height()
assert isinstance(rv, int) and rv >= 0
self._check_invariants()
return rv
return g
def no_op(f):
return f
if debugging_level == 0:
modifies_self = no_op
parent_callable = no_op
user_callable = no_op
may_overflow = no_op
may_collapse = no_op
########################################################################
# Utility functions and decorators for fixing up index parameters.
def sanify_index(n, i):
if isinstance(i, slice): return i
if i < 0:
i += n
return i
def strong_sanify_index(n, i):
if isinstance(i, slice): return i
if i < 0:
i += n
if i < 0:
i = 0
elif i > n:
i = n
return i
def allow_negative1(f):
"Decarator for allowing a negative position as the first argument"
def g(self, i, *args, **kw):
i = sanify_index(self.n, i)
return f(self, i, *args, **kw)
return g
def allow_negative2(f):
"Decarator for allowing a negative position as the 1st and 2nd args"
def g(self, i, j, *args, **kw):
i = sanify_index(self.n, i)
j = sanify_index(self.n, j)
return f(self, i, j, *args, **kw)
return g
########################################################################
# An extra constructor and the main class
def _BList(other=[]):
"Create a new BList for internal use"
self = BList(other)
self.refcount = 1
return self
class BList(object):
__slots__ = ('leaf', 'children', 'n', 'refcount')
def _check_invariants(self):
if debugging_level == NO_DEBUG: return
try:
if debugging_level == PARANOIA:
self.__check_reference_count()
if self.leaf:
assert self.n == len(self.children)
else:
assert self.n == sum(child.n for child in self.children)
assert len(self.children) > 1 or len(self.children) == 0, len(self.children)
for child in self.children:
assert isinstance(child, BList)
assert half <= len(child.children) <= limit
assert self.refcount >= 1 or self.refcount is None \
or (self.refcount == 0 and not self.children)
except:
print self.debug()
raise
def _check_invariants_r(self):
if debugging_level == NO_DEBUG: return
self._check_invariants()
if self.leaf: return
for c in self.children:
c._check_invariants_r()
def __init__(self, seq=[]):
self.leaf = True
# Points to children
self.children = []
# Number of leaf elements that are descendents of this node
self.n = 0
# User visible objects have a refcount of None
self.refcount = None
# We can copy other BLists in O(1) time :-)
if isinstance(seq, BList):
self.__become(seq)
self._check_invariants()
return
self.__init_from_seq(seq)
####################################################################
# Useful internal utility functions
@modifies_self
def __become(self, other):
"Turns self into a clone of other"
if id(self) == id(other):
self._adjust_n()
return
if not other.leaf:
for child in other.children:
child._incref()
if other.refcount is not None:
other._incref() # Other may be one of our children
self.__forget_children()
self.n = other.n
self.children[:] = other.children
self.leaf = other.leaf
if other.refcount is not None:
other._decref()
@parent_callable
@modifies_self
def _adjust_n(self):
"Recompute self.n"
if self.leaf:
self.n = len(self.children)
else:
self.n = sum(x.n for x in self.children)
@parent_callable
def _locate(self, i):
"""We are searching for the child that contains leaf element i.
Returns a 3-tuple: (the child object, our index of the child,
the number of leaf elements before the child)
"""
if self.leaf:
return self.children[i], i, i
so_far = 0
for k in range(len(self.children)):
p = self.children[k]
if i < so_far + p.n:
return p, k, so_far
so_far += p.n
else:
return self.children[-1], len(self.children)-1, so_far - p.n
def __get_reference_count(self):
"Figure out how many parents we have"
import gc
# Count the number of times we are pointed to by a .children
# list of a BList
gc.collect()
objs = gc.get_referrers(self)
total = 0
for obj in objs:
if isinstance(obj, list):
# Could be a .children
objs2 = gc.get_referrers(obj)
for obj2 in objs2:
# Could be a BList
if isinstance(obj2, BList):
total += len([x for x in obj2.children if x is self])
return total
def __check_reference_count(self):
"Validate that we're counting references properly"
total = self.__get_reference_count()
if self.refcount is not None:
# The caller may be about to increment the reference counter, so
# total == self.refcount or total+1 == self.refcount are OK
assert total == self.refcount or total+1 == self.refcount,\
(total, self.refcount)
# Reset the flag to avoid repeatedly raising the assertion
global leaked_reference
x = leaked_reference
leaked_reference = False
assert not x, x
def _decref(self):
assert self.refcount is not None
assert self.refcount > 0
if self.refcount == 1:
# We're going to be garbage collected. Remove all references
# to other objects.
self.__forget_children()
self.refcount -= 1
def _incref(self):
assert self.refcount is not None
self.refcount += 1
@parent_callable
def _get_height(self):
"""Find the current height of the tree.
We could keep an extra few bytes in each node rather than
figuring this out dynamically, which would reduce the
asymptotic complexitiy of a few operations. However, I
suspect it's not worth the extra overhead of updating it all
over the place.
"""
if self.leaf:
return 1
return 1 + self.children[-1]._get_height()
@modifies_self
def __forget_children(self, i=0, j=None):
"Remove links to some of our children, decrementing their refcounts"
if j is None: j = len(self.children)
if not self.leaf:
for k in range(i, j):
self.children[k]._decref()
del self.children[i:j]
def __del__(self):
"""In C, this would be a tp_clear function instead of a __del__.
Because of the way Python's garbage collector handles __del__
methods, we can end up with uncollectable BList objects if the
user creates circular references. In C with a tp_clear
function, this wouldn't be a problem.
"""
if self.refcount:
global leaked_reference
leaked_reference = True
try:
self.refcount = 1 # Make invariance-checker happy
self.__forget_children()
self.refcount = 0
except:
import traceback
traceback.print_exc()
raise
@modifies_self
def __forget_child(self, i):
"Removes links to one child"
self.__forget_children(i, i+1)
@modifies_self
def __prepare_write(self, pt):
"""We are about to modify the child at index pt. Prepare it.
This function returns the child object. If the caller has
other references to the child, they must be discarded as they
may no longer be valid.
If the child's .refcount is 1, we simply return the
child object.
If the child's .refcount is greater than 1, we:
- copy the child object
- decrement the child's .refcount
- replace self.children[pt] with the copy
- return the copy
"""
if pt < 0:
pt = len(self.children) + pt
if not self.leaf and self.children[pt].refcount > 1:
new_copy = _BList()
new_copy.__become(self.children[pt])
self.children[pt]._decref()
self.children[pt] = new_copy
return self.children[pt]
@staticmethod
def __new_sibling(children, leaf):
"""Non-default constructor. Create a node with specific children.
We steal the reference counters from the caller.
"""
self = _BList()
self.children = children
self.leaf = leaf
self._adjust_n()
return self
####################################################################
# Functions for manipulating the tree
@modifies_self
def __borrow_right(self, k):
"Child k has underflowed. Borrow from k+1"
p = self.children[k]
right = self.__prepare_write(k+1)
total = len(p.children) + len(right.children)
split = total//2
assert split >= half
assert total-split >= half
migrate = split - len(p.children)
p.children.extend(right.children[:migrate])
del right.children[:migrate]
right._adjust_n()
p._adjust_n()
@modifies_self
def __borrow_left(self, k):
"Child k has underflowed. Borrow from k-1"
p = self.children[k]
left = self.__prepare_write(k-1)
total = len(p.children) + len(left.children)
split = total//2
assert split >= half
assert total-split >= half
migrate = split - len(p.children)
p.children[:0] = left.children[-migrate:]
del left.children[-migrate:]
left._adjust_n()
p._adjust_n()
@modifies_self
def __merge_right(self, k):
"Child k has underflowed. Merge with k+1"
p = self.children[k]
for p2 in self.children[k+1].children:
if not self.children[k+1].leaf:
p2._incref()
p.children.append(p2)
self.__forget_child(k+1)
p._adjust_n()
@modifies_self
def __merge_left(self, k):
"Child k has underflowed. Merge with k-1"
p = self.children[k]
if not self.children[k-1].leaf:
for p2 in self.children[k-1].children:
p2._incref()
p.children[:0] = self.children[k-1].children
self.__forget_child(k-1)
p._adjust_n()
@staticmethod
def __concat(left_subtree, right_subtree, height_diff):
"""Concatenate two trees of potentially different heights.
The parameters are the two trees, and the difference in their
heights expressed as left_height - right_height.
Returns a tuple of the new, combined tree, and an integer.
The integer expresses the height difference between the new
tree and the taller of the left and right subtrees. It will
be 0 if there was no change, and 1 if the new tree is taller
by 1.
"""
assert left_subtree.refcount == 1
assert right_subtree.refcount == 1
adj = 0
if height_diff == 0:
root = _BList()
root.children = [left_subtree, right_subtree]
root.leaf = False
collapse = root.__underflow(0)
if not collapse:
collapse = root.__underflow(1)
if not collapse:
adj = 1
overflow = None
elif height_diff > 0: # Left is larger
root = left_subtree
overflow = root._insert_subtree(-1, right_subtree,
height_diff - 1)
else: # Right is larger
root = right_subtree
overflow = root._insert_subtree(0, left_subtree,
-height_diff - 1)
adj += -root.__overflow_root(overflow)
return root, adj
@staticmethod
def __concat_subtrees(left_subtree, left_depth, right_subtree,right_depth):
"""Concatenate two subtrees of potentially different heights.
Returns a tuple of the new, combined subtree and its depth.
Depths are the depth in the parent, not their height.
"""
root, adj = BList.__concat(left_subtree, right_subtree,
-(left_depth - right_depth))
return root, max(left_depth, right_depth) - adj
@staticmethod
def __concat_roots(left_root, left_height, right_root, right_height):
"""Concatenate two roots of potentially different heights.
Returns a tuple of the new, combined root and its height.
Heights are the height from the root to its leaf nodes.
"""
root, adj = BList.__concat(left_root, right_root,
left_height - right_height)
return root, max(left_height, right_height) + adj
@may_collapse
@modifies_self
def __collapse(self):
"Collapse the tree, if possible"
if len(self.children) != 1 or self.leaf:
self._adjust_n()
return 0
p = self.children[0]
self.__become(p)
return 1
@may_collapse
@modifies_self
def __underflow(self, k):
"""Check if children k-1, k, or k+1 have underflowed.
If so, move things around until self is the root of a valid
subtree again, possibly requiring collapsing the tree.
Always calls self._adjust_n() (often via self.__collapse()).
"""
if self.leaf:
self._adjust_n()
return 0
if k < len(self.children):
p = self.__prepare_write(k)
short = half - len(p.children)
while short > 0:
if k+1 < len(self.children) \
and len(self.children[k+1].children) - short >= half:
self.__borrow_right(k)
elif k > 0 and len(self.children[k-1].children) - short >=half:
self.__borrow_left(k)
elif k+1 < len(self.children):
self.__merge_right(k)
elif k > 0:
self.__merge_left(k)
k = k - 1
else:
# No siblings for p
return self.__collapse()
p = self.__prepare_write(k)
short = half - len(p.children)
if k > 0 and len(self.children[k-1].children) < half:
collapse = self.__underflow(k-1)
if collapse: return collapse
if k+1 < len(self.children) \
and len(self.children[k+1].children) <half:
collapse = self.__underflow(k+1)
if collapse: return collapse
return self.__collapse()
@modifies_self
def __overflow_root(self, overflow):
"Handle the case where a user-visible node overflowed"
self._check_invariants()
if not overflow: return 0
child = _BList(self)
self.__forget_children()
self.children[:] = [child, overflow]
self.leaf = False
self._adjust_n()
self._check_invariants()
return -1
@may_overflow
@modifies_self
def __insert_here(self, k, item):
"""Insert 'item', which may be a subtree, at index k.
Since the subtree may have fewer than half elements, we may
need to merge it after insertion.
This function may cause self to overflow. If it does, it will
take the upper half of its children and put them in a new
subtree and return the subtree. The caller is responsible for
inserting this new subtree just to the right of self.
Otherwise, it returns None.
"""
if k < 0:
k += len(self.children)
if len(self.children) < limit:
self.children.insert(k, item)
collapse = self.__underflow(k)
assert not collapse
self._adjust_n()
return None
sibling = BList.__new_sibling(self.children[half:], self.leaf)
del self.children[half:]
if k < half:
self.children.insert(k, item)
collapse = self.__underflow(k)
assert not collapse
else:
sibling.children.insert(k - half, item)
collapse = sibling.__underflow(k-half)
assert not collapse
sibling._adjust_n()
self._adjust_n()
return sibling
@may_overflow
@modifies_self
def _insert_subtree(self, side, subtree, depth):
"""Recurse depth layers, then insert subtree on the left or right
This function may cause an overflow.
depth == 0 means insert the subtree as a child of self.
depth == 1 means insert the subtree as a grandchild, etc.
"""
assert side == 0 or side == -1
self._check_invariants()
subtree._check_invariants()
self.n += subtree.n
if depth:
p = self.__prepare_write(side)
overflow = p._insert_subtree(side, subtree, depth-1)
if not overflow: return None
subtree = overflow
if side < 0:
side = len(self.children)
sibling = self.__insert_here(side, subtree)
return sibling
@modifies_self
def __reinsert_subtree(self, k, depth):
'Child at position k is too short by "depth". Fix it'
assert self.children[k].refcount == 1, self.children[k].refcount
subtree = self.children.pop(k)
if len(self.children) > k:
# Merge right
p = self.__prepare_write(k)
overflow = p._insert_subtree(0, subtree, depth-1)
if overflow:
self.children.insert(k+1, overflow)
else:
# Merge left
p = self.__prepare_write(k-1)
overflow = p._insert_subtree(-1, subtree, depth-1)
if overflow:
self.children.insert(k, overflow)
return self.__underflow(k)
####################################################################
# The main insert and deletion operations
@may_overflow
@modifies_self
def _insert(self, i, item):
"""Recursive to find position i, and insert item just there.
This function may cause an overflow.
"""
if self.leaf:
return self.__insert_here(i, item)
p, k, so_far = self._locate(i)
del p
self.n += 1
p = self.__prepare_write(k)
overflow = p._insert(i - so_far, item)
del p
if not overflow: return
return self.__insert_here(k+1, overflow)
@user_callable
@modifies_self
def __iadd__(self, other):
# Make not-user-visible roots for the subtrees
right = _BList(other)
left = _BList(self)
left_height = left._get_height()
right_height = right._get_height()
root = BList.__concat_subtrees(left, -left_height,
right, -right_height)[0]
self.__become(root)
root._decref()
return self
@parent_callable
@may_collapse
@modifies_self
def _delslice(self, i, j):
"""Recursive version of __delslice__
This may cause self to collapse. It returns None if it did
not. If a collapse occured, it returns a positive integer
indicating how much shorter this subtree is compared to when
_delslice() was entered.
Additionally, this function may cause an underflow.
"""
if i == 0 and j >= self.n:
# Delete everything.
self.__forget_children()
self.n = 0
return 0
if self.leaf:
del self.children[i:j]
self.n = len(self.children)
return 0
p, k, so_far = self._locate(i)
p2, k2, so_far2 = self._locate(j-1)
del p
del p2
if k == k2:
# All of the deleted elements are contained under a single
# child of this node. Recurse and check for a short
# subtree and/or underflow
assert so_far == so_far2
p = self.__prepare_write(k)
depth = p._delslice(i - so_far, j - so_far)
if not depth:
return self.__underflow(k)
return self.__reinsert_subtree(k, depth)
# Deleted elements are in a range of child elements. There
# will be:
# - a left child (k) where we delete some (or all) of its children
# - a right child (k2) where we delete some (or all) of it children
# - children in between who are deleted entirely
# Call _delslice recursively on the left and right
p = self.__prepare_write(k)
collapse_left = p._delslice(i - so_far, j - so_far)
del p
p2 = self.__prepare_write(k2)
collapse_right = p2._delslice(max(0, i - so_far2), j - so_far2)
del p2
deleted_k = False
deleted_k2 = False
# Delete [k+1:k2]
self.__forget_children(k+1, k2)
k2 = k+1
# Delete k1 and k2 if they are empty
if not self.children[k2].n:
self.children[k2]._decref()
del self.children[k2]
deleted_k2 = True
if not self.children[k].n:
self.children[k]._decref()
del self.children[k]
deleted_k = True
if deleted_k and deleted_k2: # No messy subtrees. Good.
return self.__collapse()
# The left and right may have collapsed and/or be in an
# underflow state. Clean them up. Work on fixing collapsed
# trees first, then worry about underflows.
if not deleted_k and not deleted_k2 \
and collapse_left and collapse_right:
# Both exist and collapsed. Merge them into one subtree.
left = self.children.pop(k)
right = self.children.pop(k)
subtree, depth = BList.__concat_subtrees(left, collapse_left,
right, collapse_right)
del left
del right
self.children.insert(k, subtree)
elif deleted_k:
# Only the right potentially collapsed, point there.
depth = collapse_right
# k already points to the old k2, since k was deleted
elif not deleted_k2 and not collapse_left:
# Only the right potentially collapsed, point there.
k = k + 1
depth = collapse_right
else:
depth = collapse_left
# At this point, we have a potentially short subtree at k,
# with depth "depth".
if not depth or len(self.children) == 1:
# Doesn't need merging, or no siblings to merge with
return depth + self.__underflow(k)
# We definitely have a short subtree at k, and we have other children
return self.__reinsert_subtree(k, depth)
@modifies_self
def __init_from_seq(self, seq):
# Try the common case of a sequence <= limit in length
iterator = iter(seq)
for i in range(limit):
try:
x = iterator.next()
except StopIteration:
self.n = len(self.children)
self._check_invariants()
return
except AttributeError:
raise TypeError('instance has no next() method')
self.children.append(x)
self.n = limit
assert limit == len(self.children)
self._check_invariants()
# No such luck, build bottom-up instead.
# The sequence data so far goes in a leaf node.
cur = _BList()
self._check_invariants()
cur._check_invariants()
cur.__become(self)
cur._check_invariants()
self.__forget_children()
cur._check_invariants()
forest = Forest()
forest.append_leaf(cur)
cur = _BList()
while 1:
try:
x = iterator.next()
except StopIteration:
break
if len(cur.children) == limit:
cur.n = limit
cur._check_invariants()
forest.append_leaf(cur)
cur = _BList()
cur.children.append(x)
if cur.children:
forest.append_leaf(cur)
cur.n = len(cur.children)
else:
cur._decref()
final = forest.finish()
self.__become(final)
final._decref()
########################################################################
# Below here are other user-callable functions built using the above
# primitives and user functions.
@parent_callable
def _str(self, f):
"""Recursive version of __str__
Not technically user-callable, but nice to keep near the other
string functions.
"""
if self.leaf:
return ', '.join(f(x) for x in self.children)
else:
return ', '.join(x._str(f) for x in self.children)
@user_callable
def __str__(self):
"User-visible function"
if Py_ReprEnter(self):
return '[...]'
#rv = 'BList(%s)' % self._str()
rv = '[%s]' % self._str(str)
Py_ReprLeave(self)
return rv
@user_callable
def __repr__(self):
"User-visible function"
if Py_ReprEnter(self):
return '[...]'
#rv = 'BList(%s)' % self._str()
rv = '[%s]' % self._str(repr)
Py_ReprLeave(self)
return rv
def debug(self, indent=''):
import gc
gc.collect()
"Return a string that shows the internal structure of the BList"
indent = indent + ' '
if not self.leaf:
rv = 'blist(leaf=%s, n=%s, r=%s, %s)' % (
str(self.leaf), str(self.n), str(self.refcount),
'\n%s' % indent +
('\n%s' % indent).join([x.debug(indent+' ')
for x in self.children]))
else:
rv = 'blist(leaf=%s, n=%s, r=%s, %s)' % (
str(self.leaf), str(self.n), str(self.refcount),
str(self.children))
return rv
@user_callable
@allow_negative1
def __getitem__(self, i):
"User-visible function"
if isinstance(i, slice):
start, stop, step = i.indices(self.n)
return BList(self[j] for j in xrange(start, stop, step))
if type(i) != types.IntType and type(i) != types.LongType:
raise TypeError('list indices must be integers')
if i >= self.n or i < 0:
raise IndexError
if self.leaf:
return self.children[i]
p, k, so_far = self._locate(i)
assert i >= so_far
return p.__getitem__(i - so_far)
@user_callable
@modifies_self
@allow_negative1
def __setitem__(self, i, y):
"User-visible function"
if isinstance(i, slice):
start, stop, step = i.indices(self.n)
if step == 1:
# More efficient
self[start:stop] = y
return
y = _BList(y)
raw_length = (stop - start)
length = raw_length//step
if raw_length % step:
length += 1
if length != len(y):
leny = len(y)
y._decref()
raise ValueError('attempt to assign sequence of size %d '
'to extended slice of size %d'
% (leny, length))
k = 0
for j in xrange(start, stop, step):
self[j] = y[k]
k += 1
y._decref()
return
if i >= self.n or i < 0:
raise IndexError
if self.leaf:
self.children[i] = y
return
p, k, so_far = self._locate(i)
p = self.__prepare_write(k)
p.__setitem__(i-so_far, y)
@user_callable
def __len__(self):
"User-visible function"
return self.n
@user_callable
def __iter__(self):
"User-visible function"
return self._iter(0, None)
def _iter(self, i, j):
"Make an efficient iterator between elements i and j"
if self.leaf:
return ShortBListIterator(self, i, j)
return BListIterator(self, i, j)
@user_callable
def __cmp__(self, other):
if not isinstance(other, BList) and not isinstance(other, list):
return cmp(id(type(self)), id(type(other)))
iter1 = iter(self)
iter2 = iter(other)
x_failed = False
y_failed = False
while 1:
try:
x = iter1.next()
except StopIteration:
x_failed = True
try:
y = iter2.next()
except StopIteration:
y_failed = True
if x_failed or y_failed: break
c = cmp(x, y)
if c: return c
if x_failed and y_failed: return 0
if x_failed: return -1
return 1
@user_callable
def __contains__(self, item):
for x in self:
if x == item: return True
return False
@user_callable
@modifies_self
def __setslice__(self, i, j, other):
# Python automatically adds len(self) to these values if they
# are negative. They'll get incremented a second time below
# when we use them as slice arguments. Subtract len(self)
# from them to keep them at the same net value.
#
# If they went positive the first time, that's OK. Python
# won't change them any further.
if i < 0:
i -= self.n
if j < 0:
j -= self.n
# Make a not-user-visible root for the other subtree
other = _BList(other)
# Efficiently handle the common case of small lists
if self.leaf and other.leaf and self.n + other.n <= limit:
self.children[i:j] = other.children
other._decref()
self._adjust_n()
return
left = self
right = _BList(self)
del left[i:]
del right[:j]
left += other
left += right
other._decref()
right._decref()
@user_callable
@modifies_self
def extend(self, other):
return self.__iadd__(other)
@user_callable
@modifies_self
def pop(self, i=-1):
try:
i = int(i)
except ValueError:
raise TypeError('an integer is required')
rv = self[i]
del self[i]
return rv
@user_callable
def index(self, item, i=0, j=None):
i, j, _ = slice(i, j).indices(self.n)
for k, x in enumerate(self._iter(i, j)):
if x == item:
return k + i
raise ValueError('list.index(x): x not in list')
@user_callable
@modifies_self
def remove(self, item):
for i, x in enumerate(self):
if x == item:
del self[i]
return
raise ValueError('list.index(x): x not in list')
@user_callable
def count(self, item):
rv = 0
for x in self:
if x == item:
rv += 1
return rv
@user_callable
@modifies_self
def reverse(self):
self.children.reverse()
if self.leaf: return
for i in range(len(self.children)):
p = self.__prepare_write(i)
p.reverse()
@user_callable
def __mul__(self, n):
if n <= 0:
return BList()
power = BList(self)
rv = BList()
if n & 1:
rv += self
mask = 2
while mask <= n:
power += power
if mask & n:
rv += power
mask <<= 1
return rv
__rmul__ = __mul__
@user_callable
@modifies_self
def __imul__(self, n):
self.__become(self * n)
return self
@parent_callable
@modifies_self
def _merge(self, other, cmp=None, key=None, reverse=False):
"""Merge two sorted BLists into one sorted BList, part of MergeSort
This function consumes the two input BLists along the way,
making the MergeSort nearly in-place. This function gains ownership
of the self and other objects and must .decref() them if appropriate.
It returns one sorted BList.
It operates by maintaining two forests (lists of BList
objects), one for each of the two inputs lists. When it needs
a new leaf node, it looks at the first element of the forest
and checks to see if it's a leaf. If so, it grabs that. If
not a leaf, it takes that node, removes the root, and prepends
the children to the forest. Then, it checks again for a leaf.
It repeats this process until it is able to acquire a leaf.
This process avoids the cost of doing O(log n) work O(n) times
(for a total O(n log n) cost per merge). It takes O(log n)
extra memory and O(n) steps.
We also maintain a forest for the output. Whenever we fill an
output leaf node, we append it to the output forest. We keep
track of the total number of leaf nodes added to the forest,
and use that to analytically determine if we have "limit" nodes at the
end of the forest all of the same height. When we do, we remove them
from the forest, place them under a new node, and put the new node on
the end of the forest. This guarantees that the output forest
takes only O(log n) extra memory. When we're done with the input, we
merge the forest into one final BList.
Whenever we finish with an input leaf node, we add it to a
recyclable list, which we use as a source for nodes for the
output. Since the output will use only O(1) more nodes than the
combined input, this part is effectively in-place.
Overall, this function uses O(log n) extra memory and takes O(n) time.
"""
other._check_invariants();
if not cmp:
cmp = builtin_cmp
recyclable = []
def do_cmp(a, b):
"Utility function for performing a comparison"
if key:
a = a[key]
b = b[key]
x = cmp(a, b)
if reverse:
x = -x
return x
def recycle(node):
"We've consumed a node, set it aside for re-use"
del node.children[:]
node.n = 0
node.leaf = True
recyclable.append(node)
assert node.refcount == 1
assert node.__get_reference_count() == 0
def get_node(leaf):
"Get a node, either from the recycled list or through allocation"
if recyclable:
node = recyclable.pop(-1)
else:
node = _BList()
node.leaf = leaf
return node
def get_leaf(forest):
"Get a new leaf node to process from one of the input forests"
node = forest.pop(-1)
assert not node.__get_reference_count()
while not node.leaf:
forest.extend(reversed(node.children))
recycle(node)
node = forest.pop(-1)
assert node.__get_reference_count() == 0
return node
try:
if do_cmp(self[-1], other[0]) <= 0: # Speed up a common case
self += other
other._decref()
return self
# Input forests
forest1 = [self]
forest2 = [other]
# Output forests
forest_out = Forest()
# Input leaf nodes we are currently processing
leaf1 = get_leaf(forest1)
leaf2 = get_leaf(forest2)
# Index into leaf1 and leaf2, respectively
i = 0
j = 0
# Current output leaf node we are building
output = get_node(leaf=True)
while ((forest1 or i < len(leaf1.children))
and (forest2 or j < len(leaf2.children))):
# Check if we need to get a new input leaf node
if i == len(leaf1.children):
recycle(leaf1)
leaf1 = get_leaf(forest1)
i = 0
if j == len(leaf2.children):
recycle(leaf2)
leaf2 = get_leaf(forest2)
j = 0
# Check if we have filled up an output leaf node
if output.n == limit:
forest_out.append_leaf(output)
output = get_node(leaf=True)
# Figure out which input leaf has the lower element
if do_cmp(leaf1.children[i], leaf2.children[j]) <= 0:
output.children.append(leaf1.children[i])
i += 1
else:
output.children.append(leaf2.children[j])
j += 1
output.n += 1
# At this point, we have completely consumed at least one
# of the lists
# Append our partially-complete output leaf node to the forest
forest_out.append_leaf(output)
# Append a partially-consumed input leaf node, if one exists
if i < len(leaf1.children):
del leaf1.children[:i]
forest_out.append_leaf(leaf1)
else:
recycle(leaf1)
if j < len(leaf2.children):
del leaf2.children[:j]
forest_out.append_leaf(leaf2)
else:
recycle(leaf2)
# Append the rest of whichever input forest still has
# nodes. This could be sped up by merging trees instead
# of doing it leaf-by-leaf.
while forest1:
forest_out.append_leaf(get_leaf(forest1))
while forest2:
forest_out.append_leaf(get_leaf(forest2))
out_tree = forest_out.finish()
finally:
# Fix reference counters, in case the user-compare function
# threw an exception.
for c in recyclable:
c._decref()
return out_tree
@parent_callable
@modifies_self
def _sort(self, *args, **kw):
if self.leaf:
self.children.sort(*args, **kw)
return
for i in range(len(self.children)):
self.__prepare_write(i)
self.children[i]._sort(*args, **kw)
while len(self.children) != 1:
children = []
for i in range(0, len(self.children)-1, 2):
#print 'Merge:', self.children[i], self.children[i+1]
a = self.children[i]
b = self.children[i+1]
self.children[i] = None # Keep reference-checker happy
self.children[i+1] = None
self.children[i] = a._merge(b, *args, **kw)
#print '->', self.children[i].debug()
#assert list(self.children[i]) == sorted(self.children[i], *args, **kw)
#self.children[i+1]._decref()
children.append(self.children[i])
self.children[:] = children
self.__become(self.children[0])
self._check_invariants_r()
@user_callable
@modifies_self
def sort(self, *args, **kw):
if self.leaf: # Special case to speed up common case
self.children.sort(*args, **kw)
return
no_list = BList()
real_self = BList(self)
self.__become(no_list)
try:
real_self._sort(*args, **kw)
self._check_invariants_r()
if self.n:
raise ValueError('list modified during sort')
finally:
self._check_invariants_r()
real_self._check_invariants_r()
self.__become(real_self)
self._check_invariants_r()
@user_callable
def __add__(self, other):
if not isinstance(other, BList) and not isinstance(other, list):
raise TypeError('can only concatenate list (not "%s") to list'
% str(type(other)))
rv = BList(self)
rv += other
return rv
@user_callable
def __radd__(self, other):
if not isinstance(other, BList) and not isinstance(other, list):
raise TypeError('can only concatenate list (not "%s") to list'
% str(type(other)))
rv = BList(other)
rv += self
return rv
@user_callable
@modifies_self
def append(self, item):
"User-visible function"
self.insert(len(self), item)
@user_callable
@modifies_self
@allow_negative1
def insert(self, i, item):
"User-visible function"
if i > self.n:
i = self.n
overflow = self._insert(i, item)
self.__overflow_root(overflow)
@user_callable
@modifies_self
def __delslice__(self, i, j):
"User-visible function"
if i >= j:
return
self._delslice(i, j)
@user_callable
@modifies_self
@allow_negative1
def __delitem__(self, i):
"User-visible function"
if isinstance(i, slice):
start, stop, step = i.indices(self.n)
if step == 1:
# More efficient
self.__delslice__(start, stop)
return
j = start
if step > 0:
step -= 1 # We delete an item at each step
while j < len(self) and j < stop:
del self[j]
j += step
else:
for j in range(start, stop, step):
del self[j]
return
if i >= self.n or i < 0:
raise IndexError
self.__delslice__(i, i+1)
@user_callable
def __getslice__(self, i, j):
"User-visible function"
# If the indices were negative, Python has already added len(self) to
# them. If they're still negative, treat them as 0.
if i < 0: i = 0
if j < 0: j = 0
if j <= i:
return BList()
if i >= self.n:
return BList()
if self.leaf:
return BList(self.children[i:j])
rv = BList(self)
del rv[j:]
del rv[:i]
return rv
def __copy__(self):
return BList(self)
########################################################################
# Forest class; an internal utility class for building BLists bottom-up
class Forest:
def __init__(self):
self.num_leafs = 0
self.forest = []
def append_leaf(self, leaf):
"Append a leaf to the output forest, possible combining nodes"
if not leaf.children: # Don't add empty leaf nodes
leaf._decref()
return
self.forest.append(leaf)
leaf._adjust_n()
# Every "limit" leaf nodes, combine the last "limit" nodes
# This takes "limit" leaf nodes and replaces them with one node
# that has the leaf nodes as children.
# Every "limit**2" leaf nodes, take the last "limit" nodes
# (which have height 2) and replace them with one node
# (with height 3).
# Every "limit**i" leaf nodes, take the last "limit" nodes
# (which have height i) and replace them with one node
# (with height i+1).
i = 1
self.num_leafs += 1
while self.num_leafs % limit**i == 0:
parent = _BList()
parent.leaf = False
assert len(self.forest) >= limit, \
(len(self.forest), limit, i, self.num_leafs)
parent.children[:] = self.forest[-limit:]
del self.forest[-limit:]
# If the right-hand node has too few children,
# borrow from a neighbor
x = parent._BList__underflow(len(parent.children)-1)
assert not x
self.forest.append(parent)
i += 1
parent._check_invariants_r()
def finish(self):
"Combine the forest into a final BList"
out_tree = None # The final BList we are building
out_height = 0 # It's height
group_height = 1 # The height of the next group from the forest
while self.forest:
n = self.num_leafs % limit # Numbers of same-height nodes
self.num_leafs /= limit
group_height += 1
if not n:
# No nodes at this height
continue
# Merge nodes of the same height into 1 node, and
# merge it into our output BList.
group = _BList()
group.leaf = False
group.children[:] = self.forest[-n:]
del self.forest[-n:]
adj = group._BList__underflow(len(group.children)-1)
if not out_tree:
out_tree = group
out_height = group_height - adj
else:
out_tree, out_height = BList._BList__concat_roots(group,
group_height - adj,
out_tree,
out_height)
out_tree._check_invariants_r()
return out_tree
########################################################################
# Iterator classes. BList._iter() choses which one to use.
class ShortBListIterator:
"A low-overhead iterator for short lists"
def __init__(self, lst, start=0, stop=None):
if stop is None:
stop = len(lst)
self.cur = start
self.stop = stop
self.lst = lst
def next(self):
if self.cur >= self.stop or self.cur >= self.lst.n:
self.stop = 0 # Ensure the iterator cannot be restarted
raise StopIteration
rv = BList.__getitem__(self.lst, self.cur)
self.cur += 1
return rv
def __iter__(self):
return self
class BListIterator:
"""A high-overhead iterator that is more asymptotically efficient.
Maintain a stack to traverse the tree. The first step is to copy
the list so we don't have to worry about user's modifying the list
and wreaking havoc with our references. Copying the list is O(1),
but not worthwhile for lists that only contain a single leaf node.
"""
def __init__(self, lst, start=0, stop=None):
self.stack = []
lst = BList(lst) # Protect against users modifying the list
if stop is None:
stop = len(lst)
if stop < 0: stop = 0
if start < 0: start = 0
self.remaining = stop - start
while not lst.leaf:
p, k, so_far = lst._locate(start)
self.stack.append([lst, k+1])
lst = lst.children[0]
start -= so_far
self.stack.append([lst, start])
def next(self):
if not self.remaining:
raise StopIteration
self.remaining -= 1
p, i = self.stack[-1]
if i < len(p.children):
self.stack[-1][1] += 1
return p.children[i]
while 1:
if not self.stack: raise StopIteration
p, i = self.stack.pop()
if i < len(p.children):
break
self.stack.append([p, i+1])
while not p.leaf:
p = p.children[i]
i = 0
self.stack.append([p, i+1])
return p.children[i]
def __iter__(self):
return self
def __copy__(self):
rv = BListIterator.__new__()
rv.stack = copy.copy(self.stack)
rv.remaining = self.remaining
return rv
########################################################################
# Test code
def main():
n = 512
data = range(n)
import random
random.shuffle(data)
x = BList(data)
x.sort()
assert list(x) == sorted(data), x
lst = BList()
t = tuple(range(n))
for i in range(n):
lst.append(i)
if tuple(lst) != t[:i+1]:
print i, tuple(lst), t[:i+1]
print lst.debug()
break
x = lst[4:258]
assert tuple(x) == tuple(t[4:258])
x.append(-1)
assert tuple(x) == tuple(t[4:258] + (-1,))
assert tuple(lst) == t
lst[200] = 6
assert tuple(x) == tuple(t[4:258] + (-1,))
assert tuple(lst) == tuple(t[0:200] + (6,) + t[201:])
del lst[200]
#print lst.debug()
assert tuple(lst) == tuple(t[0:200] + t[201:])
lst2 = BList(range(limit+1))
assert tuple(lst2) == tuple(range(limit+1))
del lst2[1]
del lst2[-1]
assert tuple(lst2) == (0,) + tuple(range(2,limit))
assert lst2.leaf
assert len(lst2.children) == limit-1
lst = BList(range(n))
lst.insert(200, 0)
assert tuple(lst) == (t[0:200] + (0,) + t[200:])
del lst[200:]
assert tuple(lst) == tuple(range(200))
lst = BList(range(3))
lst*3
assert lst*3 == range(3)*3
a = BList('spam')
a.extend('eggs')
assert a == list('spameggs')
x = BList([0])
for i in range(290) + [1000, 10000, 100000, 1000000, 10000000]:
if len(x*i) != i:
print 'mul failure', i
print (x*i).debug()
break
little_list = BList([0])
big_list = little_list * 2**512
blist = BList
if __name__ == '__main__':
main()
|