1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// Array DAXPY benchmark
#include <blitz/benchext.h>
#include <blitz/array.h>
#include <blitz/vector2.h>
#include <random/uniform.h>
BZ_NAMESPACE(blitz)
extern void sink();
BZ_NAMESPACE_END
BZ_USING_NAMESPACE(blitz)
#ifdef BZ_FORTRAN_SYMBOLS_WITH_TRAILING_UNDERSCORES
#define arrdaxpyf arrdaxpyf_
#elif defined(BZ_FORTRAN_SYMBOLS_WITH_DOUBLE_TRAILING_UNDERSCORES)
#define arrdaxpyf arrdaxpyf__
#endif
extern "C" {
void arrdaxpyf(double* A, double* B, int& N, double& a);
}
void arrdaxpyFortran77Version(BenchmarkExt<int>& bench);
void arrdaxpyBlitzVersion(BenchmarkExt<int>& bench);
int main()
{
BenchmarkExt<int> bench("Array DAXPY", 2);
const int numSizes = 8;
bench.setNumParameters(numSizes);
bench.setDependentVariable("flops");
Vector<int> parameters(numSizes);
Vector<long> iters(numSizes);
Vector<double> flops(numSizes);
parameters = pow(2.,tensor::i);
cout << parameters;
iters = 100*16*32*8*8*8/pow3(parameters);
cout << iters;
flops = pow3(parameters) * 2 * 2;
cout << flops;
bench.setParameterVector(parameters);
bench.setParameterDescription("3D Array size");
bench.setIterations(iters);
bench.setOpsPerIteration(flops);
bench.beginBenchmarking();
arrdaxpyBlitzVersion(bench);
arrdaxpyFortran77Version(bench);
bench.endBenchmarking();
bench.saveMatlabGraph("arrdaxpy.m");
return 0;
}
void initializeRandomDouble(double* data, int numElements)
{
ranlib::Uniform<double> rnd;
for (int i=0; i < numElements; ++i)
data[i] = rnd.random();
}
void arrdaxpyBlitzVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Blitz++");
while (!bench.doneImplementationBenchmark())
{
int N = bench.getParameter();
cout << "Blitz++: N = " << N << endl;
cout.flush();
long iters = bench.getIterations();
Array<double,3> A(N,N,N), B(N,N,N);
initializeRandomDouble(A.data(), N*N*N);
initializeRandomDouble(B.data(), N*N*N);
TinyVector<int,2> size = N-2;
double a = 0.34928313;
double b = - a;
bench.start();
for (long i=0; i < iters; ++i)
{
A += a * B;
A += b * B;
sink();
}
bench.stop();
bench.startOverhead();
for (long i=0; i < iters; ++i) {
sink();
}
bench.stopOverhead();
}
bench.endImplementation();
}
void arrdaxpyFortran77Version(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Fortran 77");
while (!bench.doneImplementationBenchmark())
{
int N = bench.getParameter();
cout << "Fortran 77: N = " << N << endl;
cout.flush();
int iters = (int)bench.getIterations();
size_t arraySize = size_t(N) * size_t(N) * N;
double* A = new double[arraySize];
double* B = new double[arraySize];
initializeRandomDouble(A, arraySize);
initializeRandomDouble(B, arraySize);
double a = 0.34928313;
for (long i=0; i < iters; ++i)
{
arrdaxpyf(A,B,N,a);
sink();
}
bench.stop();
bench.startOverhead();
for (long i=0; i < iters; ++i) {
sink();
}
bench.stopOverhead();
delete [] A;
delete [] B;
}
bench.endImplementation();
}
|