1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#include <blitz/timer.h>
using namespace blitz;
void report(const char* name, Timer& timer, int N,
long int iterations);
void unfused(int N);
void fused(int N);
void chunky(int N);
float* _bz_restrict a;
float* _bz_restrict b;
float* _bz_restrict c;
float* _bz_restrict d;
float* _bz_restrict e;
float* _bz_restrict f;
/*
* Code to support the "fuse" macro
*/
int _chunk;
bool _done_chunks;
int _chunk_size = 512;
#define fuse _chunk = 0; _done_chunks = false; \
for (; !_done_chunks; ++_chunk)
int main(int argc, char** argv)
{
if (argc == 2)
_chunk_size = atoi(argv[1]);
cout << "Using chunk size " << _chunk_size << endl;
const int N = 100000;
a = new float[N];
b = new float[N];
c = new float[N];
d = new float[N];
e = new float[N];
f = new float[N];
for (int i=0; i < N; ++i)
{
a[i] = i;
b[i] = i;
c[i] = i;
d[i] = i;
}
Timer timer;
long int iterations = 100;
timer.start();
for (long i=0; i < iterations; ++i)
unfused(N);
timer.stop();
report("Unfused", timer, N, iterations);
timer.start();
for (long i=0; i < iterations; ++i)
fused(N);
timer.stop();
report("Fused", timer, N, iterations);
timer.start();
for (long i=0; i < iterations; ++i)
chunky(N);
timer.stop();
report("Chunky", timer, N, iterations);
return 0;
}
void report(const char* name, Timer& timer, int N,
long int iterations)
{
float flops = float(N) * iterations * 2;
float Mflops = flops / timer.elapsedSeconds() / 1e+6;
cout << setw(20) << name << " " << Mflops << " Mflops/s" << endl;
}
void __sink() { }
void unfused(int N)
{
for (int i=0; i < N; ++i)
e[i] = a[i] * b[i] + c[i] * d[i];
__sink();
for (int i=0; i < N; ++i)
f[i] = c[i] * b[i] + a[i] * d[i];
}
void fused(int N)
{
for (int i=0; i < N; ++i)
{
e[i] = a[i] * b[i] + c[i] * d[i];
f[i] = c[i] * b[i] + a[i] * d[i];
}
}
// This "chunky" routine is a simulated implementation of
// expression templates with tiling across multiple statements
// (the "chunky fusion" approach). This code would be
// generated by:
//
// fuse {
// E = A*B + C*D;
// F = C*B + A*D;
// }
void chunky(int N)
{
fuse {
{ // Code generated by E = A*B + C*D;
int lbound = _chunk * _chunk_size;
int uboundp1 = lbound + _chunk_size;
if (uboundp1 > N)
{
_done_chunks = true;
uboundp1 = N;
}
for (int i=lbound; i < uboundp1; ++i)
e[i] = a[i] * b[i] + c[i] * d[i];
}
__sink();
{ // Code generated by F = C*B + A*D;
int lbound = _chunk * _chunk_size;
int uboundp1 = lbound + _chunk_size;
if (uboundp1 > N)
{
_done_chunks = true;
uboundp1 = N;
}
for (int i=lbound; i < uboundp1; ++i)
f[i] = c[i] * b[i] + a[i] * d[i];
}
}
}
|