1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
// Haney's induction calculation benchmark.
//
// See: Scott W. Haney, Is C++ Fast Enough for Scientific Computing?
// Computers in Physics Vol. 8 No. 6 (1994), p. 690
//
// Arch D. Robison, C++ Gets Faster for Scientific Computing,
// Computers in Physics Vol. 10 No. 5 (1996), p. 458
//
#include <blitz/vector.h>
#include <blitz/rand-uniform.h>
#include <blitz/benchext.h>
#ifdef BZ_HAVE_STD
#include <valarray>
#else
#include <valarray.h>
#endif
BZ_USING_NAMESPACE(blitz)
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifdef BZ_FORTRAN_SYMBOLS_WITH_TRAILING_UNDERSCORES
#define vecopsf vecopsf_
#define vecopsfo vecopsfo_
#endif
extern "C"
{
void vecopsf(float *li, const float *R, const float *w, const int &N,
const int& iters);
void vecopsfo(float *li, const float *R, const float *w, const int &N,
const int& iters);
}
inline float sqr(float x)
{
return x*x;
}
const float Mu0 = 4.0 * M_PI * 1.0e-7;
void HaneyCVersion(BenchmarkExt<int>& bench);
void HaneyFortranVersion(BenchmarkExt<int>& bench);
void HaneyBlitzVersion(BenchmarkExt<int>& bench);
int main()
{
BenchmarkExt<int> bench("Haney Inductance Calculation", 3);
bench.setRateDescription("Operations/s");
bench.beginBenchmarking();
HaneyCVersion(bench);
HaneyFortranVersion(bench);
HaneyBlitzVersion(bench);
bench.endBenchmarking();
bench.saveMatlabGraph("haney.m");
return 0;
}
void initializeRandom(float* data, int length)
{
Random<Uniform> unif(1.0, 2.0);
for (int i=0; i < length; ++i)
data[i] = unif.random();
}
void HaneyCVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Inlined C");
while (!bench.doneImplementationBenchmark()) {
int length = bench.getParameter();
long iters = bench.getIterations();
cout << "length = " << length << " iters = " << iters << endl;
float* li = new float[length];
float* R = new float[length];
float* w = new float[length];
initializeRandom(li, length);
initializeRandom(R, length);
initializeRandom(w, length);
// Tickle the cache
for (int i=0; i < length; ++i)
li[i] = R[i] + log(w[i]);
bench.start();
for (long j=0; j < iters; ++j) {
for (int i=0; i < length; ++i) {
li[i] = Mu0 * R[i] *
(0.5 * (1.0 + (1.0/24.0)
* sqr(w[i]/R[i])) * log(32.0 * sqr(R[i]/w[i]))
+ 0.05 * sqr(w[i]/R[i]) - 0.85);
}
}
bench.stop();
// Subtract the loop overhead
bench.startOverhead();
for (long j=0; j < iters; ++j) {}
bench.stopOverhead();
delete [] li;
delete [] w;
delete [] R;
}
bench.endImplementation();
}
void HaneyFortranVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Fortran");
while (!bench.doneImplementationBenchmark()) {
int length = bench.getParameter();
int iters = (int)bench.getIterations();
cout << "length = " << length << " iters = " << iters << endl;
float* li = new float[length];
float* R = new float[length];
float* w = new float[length];
initializeRandom(li, length);
initializeRandom(R, length);
initializeRandom(w, length);
// Tickle
int oneIter = 1;
vecopsf(li, R, w, length, oneIter);
// Time
bench.start();
vecopsf(li, R, w, length, iters);
bench.stop();
// Time overhead
bench.startOverhead();
vecopsfo(li, R, w, length, iters);
bench.stopOverhead();
delete [] li;
delete [] w;
delete [] R;
}
bench.endImplementation();
}
void HaneyBlitzVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Blitz++");
while (!bench.doneImplementationBenchmark()) {
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<float> li(length), R(length), w(length);
initializeRandom(li.data(), length);
initializeRandom(R.data(), length);
initializeRandom(w.data(), length);
cout << "length = " << length << " iters = " << iters << endl;
// Tickle
li = w + log(R);
// Time
bench.start();
for (long i=0; i < iters; ++i) {
#if defined(__GNUC__) && (__GNUC__ < 3)
li = Mu0 * R * ( (0.5 + (0.5/24.0) * sqr(w/R) )
* log(32.0 * sqr(R/w)) + 0.05 * sqr(w/R) - 0.85);
#else
li = Mu0 * R * (0.5 * (1.0 + (1.0/24.0) * sqr(w/R))
* log(32.0 * sqr(R/w)) + 0.05 * sqr(w/R) - 0.85);
#endif
}
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i) {
}
bench.stopOverhead();
}
bench.endImplementation();
}
|