File: kepler.cpp

package info (click to toggle)
blitz%2B%2B 1%3A0.10-3.2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,276 kB
  • ctags: 12,037
  • sloc: cpp: 70,465; sh: 11,116; fortran: 1,510; python: 1,246; f90: 852; makefile: 701
file content (243 lines) | stat: -rw-r--r-- 9,496 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include <blitz/vector.h>
#include <blitz/tinyvec.h>

BZ_USING_NAMESPACE(blitz)

/*
 * Test a 12th order symmetric multistep method for solving the equations
 * of motion of a single planet circling the Sun.  The Sun is fixed in
 * space.
 *
 * Original F77 version written by John K. Prentice, Quetzal Computational
 * Associates, 21 Decmber 1992
 * 
 * Blitz++ version by Todd Veldhuizen, 17 August 1997
 * The C++ version is a faithful translation of the Fortran 90 version,
 * so apologies for the "C++Tran" style.
 */

inline double relativeError(double a, double b)
{
    if (b != 0.0)
        return (a - b) / b;
    else
        return a;
}

int main()
{
    Vector<double> x_position_numerical(13), y_position_numerical(13),
        alpha(13), beta(13), gamma(13), x_acceleration(13), y_acceleration(13);
   
    /*
     * 12th order symmetric method coefficients
     *
     * Reference: "Symmetric Multistep Methods for the Numerical
     * Integration of Planetary Orbits", G. D. Quinlan and
     * S. Tremaine, The Astronomical Journal, 100 (1990), page 1695.
     *
     * Note!! The beta below are actually 53,222,400 times the
     * real beta.  This common factor is divided out in the
     * symmetric multistep calculation itself, in order to minimize
     * round-off
     */

    const double beta_factor = 53222400.0;
    alpha = 1.0, -2.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 2.0, -2.0, 1.0;
    beta  = 0.0, 90987349.0, -229596838.0, 812627169.0, -1628539944.0, 
            2714971338.0, -3041896548.0, 2714971338.0, -1628539944.0,
            812627169.0, -229596838.0, 90987349.0, 0.0;

    /*
     * 12th order Cowell predictor coefficients
     *
     * Reference:  "Astronomical Papers Prepared for the Use of the
     * American Ephemeris and Nautical Almanac", C. J. Cohen, E. C.
     * Hubbard, and C. Oesterwinter, 22 (1973), page 20-21.
     *
     * Note!!  The gamma below are actually 1,743,565,824,000 times
     * the real gamma.  This common factor is divided out in the
     * Cowell predictor calculation itself, in order to minimize
     * round-off
     */

    const double gamma_factor = 1743565824000.0;
    gamma = 9072652009253.0, -39726106418680.0, 140544566352762.0, 
       -344579280210129.0, 613137294629235.0, -811345852376496.0,
       807012356281740.0, -602852367932304.0, 333888089374395.0, 
       -133228219027160.0, 36262456774618.0, -6033724094760.0,
       463483373517.0;

    // Initialize variables

    const double time_step = 0.25,
                 stop_time = 365000.0,
                 radius    = 1.0;
    double time = - time_step;

    cout << " Position solution via 12th order symmetric multistep method\n"
         << " Velocity solution via 12th order Cowell predictor method\n"
         << "     radius = " << radius << ", time step = " << time_step
         << endl;

    // Define a constant which is needed later by the exact solution
    const double gaussian_constant = 0.01720209895;
    const double gravitational_constant = pow(gaussian_constant,2);
    const double constant = sqrt(gravitational_constant/pow(radius,3));

    // Initialize the first 12 numerical values using the exact values

    double x_position_exact, y_position_exact;

    for (int j=-1; j <= 11; ++j)
    {
        if (j >= 0)
            time += time_step;

        x_position_exact = radius * cos(constant * time);
        y_position_exact = radius * sin(constant * time);

        if (j >= 0)
        {
            x_position_numerical(j) = x_position_exact;
            y_position_numerical(j) = y_position_exact;
        }

        x_acceleration(j+1) = -gravitational_constant/pow(radius,3) 
            * x_position_exact;
        y_acceleration(j+1) = -gravitational_constant/pow(radius,3)
            * y_position_exact;
    }

    /*
     * Compute exact kinetic and potential energies, and the
     * angular momentum.  These values are all divided by the mass
     * of the object.  Since they are conserved, they will never change
     * and hence do not have to be recalculated later.
     */

    double x_dot_exact = -radius * constant * sin(constant*time),
         y_dot_exact =  radius * constant * cos(constant*time),
         exact_velocity_squared = pow(x_dot_exact,2) + pow(y_dot_exact,2),
         exact_kinetic_energy = 0.5 * exact_velocity_squared,
         exact_potential_energy = -gravitational_constant / radius,
         exact_total_energy = exact_potential_energy + exact_kinetic_energy,
         exact_angular_momentum = x_position_exact * y_dot_exact
             - y_position_exact * x_dot_exact;

    double x_dot_numerical, y_dot_numerical;

    // Perform loop over time

    while (time <= stop_time)                           
    {
        // Advance time step (eek!)
        time += time_step;        

        // Calculate new acceleration of body at time=time-time_step
        double numerical_radius_squared = pow(x_position_numerical(11),2)
            + pow(y_position_numerical(11),2);
        x_acceleration(12) = -gravitational_constant
            / pow(numerical_radius_squared, 1.5) * x_position_numerical(11);
        y_acceleration(12) = -gravitational_constant
            / pow(numerical_radius_squared, 1.5) * y_position_numerical(11);

        // Numerically solve for the new positions using a 12th order
        // symmetric multistep method.

        // First sum the first and second terms

        double x_alpha_sum = dot(alpha(Range(0,11)), 
            x_position_numerical(Range(0,11)));
        double y_alpha_sum = dot(alpha(Range(0,11)), 
            y_position_numerical(Range(0,11)));

        double x_beta_sum = dot(beta(Range(0,11)), x_acceleration(Range(1,12)));
        double y_beta_sum = dot(beta(Range(0,11)), y_acceleration(Range(1,12)));
        x_position_numerical(12) = (-x_alpha_sum) + pow(time_step,2) 
            * (x_beta_sum / beta_factor);
        y_position_numerical(12) = (-y_alpha_sum) + pow(time_step,2)
            * (y_beta_sum / beta_factor);

        // Numerically solve for the new velocities using a 12th order
        // Cowell predictor method.

        // First sum the gamma terms

        double x_gamma_sum = dot(gamma, x_acceleration.reverse()),
               y_gamma_sum = dot(gamma, y_acceleration.reverse());

        x_dot_numerical = (x_position_numerical(11)
            - x_position_numerical(10)) / time_step + time_step 
            * (x_gamma_sum / gamma_factor);
        y_dot_numerical = (y_position_numerical(11)
            - y_position_numerical(10)) / time_step + time_step
            * (y_gamma_sum / gamma_factor);

        // Push the stack down one

        for (int j=0; j <= 11; ++j)
        {
            x_position_numerical(j) = x_position_numerical(j+1);
            y_position_numerical(j) = y_position_numerical(j+1);
            x_acceleration(j) = x_acceleration(j+1);
            y_acceleration(j) = y_acceleration(j+1);
        }
    }

    // Print results

    // First compute energies and angular momenta (add divided by the mass
    // of the object)

    double numerical_velocity_squared = pow(x_dot_numerical,2) +
               pow(y_dot_numerical,2),
           numerical_radius = sqrt(pow(x_position_numerical(12),2)
               + pow(y_position_numerical(12),2)),
           numerical_kinetic_energy = 0.5 * numerical_velocity_squared,
           numerical_potential_energy = -gravitational_constant 
               / numerical_radius,
           numerical_total_energy = numerical_potential_energy
               + numerical_kinetic_energy,
           numerical_angular_momentum = x_position_numerical(12)
               * y_dot_numerical - y_position_numerical(12) * x_dot_numerical;

    // Compute exact results for comparison to the numerical results

   x_position_exact = radius * cos(constant * time);
   y_position_exact = radius * sin(constant * time);
   x_dot_exact = -radius * constant * sin(constant * time);
   y_dot_exact =  radius * constant * cos(constant * time);

    // Next compute relative errors

    double radius_error = relativeError(numerical_radius, radius),
           x_error = relativeError(x_position_numerical(12), x_position_exact),
           y_error = relativeError(y_position_numerical(12), y_position_exact),
           x_dot_error = relativeError(x_dot_numerical, x_dot_exact),
           y_dot_error = relativeError(y_dot_numerical, y_dot_exact);

    double kinetic_energy_error = relativeError(numerical_kinetic_energy,
               exact_kinetic_energy),
           potential_energy_error = relativeError(numerical_potential_energy,
               exact_potential_energy),
           total_energy_error = relativeError(numerical_total_energy,
               exact_total_energy),
           angular_momentum_error = relativeError(numerical_angular_momentum,
               exact_angular_momentum);

    cout << " Time = " << time << endl
         << "    x rel error  = " << x_error << " y rel error  = " << y_error
         << endl
         << "    vx rel error = " << x_dot_error << " vy rel error = " 
         << y_dot_error << endl
         << "    KE rel error = " << kinetic_energy_error 
         << " PE rel error = " << potential_energy_error << endl
         << "    TE rel error = " << total_energy_error << " AM rel error = "
         << angular_momentum_error << endl
         << "    numerical radius = " << numerical_radius 
         << " radius rel error = " << radius_error << endl;

    return 0;
}