1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
#include <blitz/tinymat.h>
#include <blitz/vector.h>
#include <blitz/benchext.h>
#include <blitz/rand-uniform.h>
#ifdef BZ_HAVE_COMPLEX
BZ_USING_NAMESPACE(blitz)
#if defined(BZ_FORTRAN_SYMBOLS_WITH_TRAILING_UNDERSCORES)
#define qcdf qcdf_
#define qcdf2 qcdf2_
#elif defined( BZ_FORTRAN_SYMBOLS_CAPS)
#define qcdf QCDF
#define qcdf2 QCDF2
#endif
extern "C" {
void qcdf(const void* M, void* res, const void* src, const int& N,
const int& iters);
void qcdf2(const void* M, void* res, const void* src, const int& N,
const int& iters);
}
int QCDBlitzVersion(BenchmarkExt<int>& bench);
int QCDBlitzTunedVersion(BenchmarkExt<int>& bench);
int QCDFortran77Version(BenchmarkExt<int>& bench);
int QCDFortran77TunedVersion(BenchmarkExt<int>& bench);
void initializeRandomDouble(double* data, int numElements);
int main()
{
cout << "Blitz++ QCD Benchmark" << endl
<< "Working... (this may take a while) ";
cout.flush();
BenchmarkExt<int> bench("Lattice QCD Benchmark", 4);
bench.setRateDescription("Millions of operations/s");
bench.beginBenchmarking();
QCDBlitzVersion(bench);
QCDBlitzTunedVersion(bench);
QCDFortran77Version(bench);
QCDFortran77TunedVersion(bench);
bench.endBenchmarking();
bench.saveMatlabGraph("qcd.m");
cout << "Done." << endl;
return 0;
}
int QCDBlitzVersion(BenchmarkExt<int>& bench)
{
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Blitz++");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
cout << "length = " << length << endl;
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
for (long i=0; i < iters; ++i)
{
for (int i=0; i < length; ++i)
res[i] = product(M[i], src[i]);
}
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> gaugeFieldElement;
struct latticeUnit {
spinor one;
gaugeFieldElement gauge;
spinor two;
};
int QCDBlitzTunedVersion(BenchmarkExt<int>& bench)
{
bench.beginImplementation("Blitz++ (tuned)");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<latticeUnit> lattice(length);
initializeRandomDouble((double*)lattice.data(),
length * sizeof(latticeUnit) / sizeof(double));
bench.start();
for (long i=0; i < iters; ++i)
{
for (int i=0; i < length; ++i)
lattice[i].two = product(lattice[i].gauge, lattice[i].one);
}
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
int QCDFortran77Version(BenchmarkExt<int>& bench)
{
// Use Blitz++ library only to allocate space for the
// arrays.
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Fortran 77");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
qcdf(M.data(), res.data(), src.data(), length, iters);
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
int QCDFortran77TunedVersion(BenchmarkExt<int>& bench)
{
// Use Blitz++ library only to allocate space for the
// arrays.
typedef TinyMatrix<complex<double>, 3, 2> spinor;
typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge;
bench.beginImplementation("Fortran 77 Hand-tuned");
while (!bench.doneImplementationBenchmark())
{
int length = bench.getParameter();
int iters = (int)bench.getIterations();
Vector<spinor> res(length), src(length);
Vector<SU3Gauge> M(length);
initializeRandomDouble((double*)src.data(),
length * sizeof(spinor) / sizeof(double));
initializeRandomDouble((double*)M.data(),
length * sizeof(SU3Gauge) / sizeof(double));
bench.start();
qcdf2(M.data(), res.data(), src.data(), length, iters);
bench.stop();
// Time overhead
bench.startOverhead();
for (long i=0; i < iters; ++i)
{
}
bench.stopOverhead();
}
bench.endImplementation();
return 0;
}
void initializeRandomDouble(double* data, int numElements)
{
// This is a temporary kludge until I implement random complex
// numbers.
static Random<Uniform> rnd;
for (int i=0; i < numElements; ++i)
data[i] = rnd.random();
}
#else // BZ_HAVE_COMPLEX
#include <iostream.h>
int main()
{
cout << "This benchmark requires <complex> from the ISO/ANSI C++ standard."
<< endl;
return 0;
}
#endif // BZ_HAVE_COMPLEX
|