1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#include "operands.h"
class OperandTuple {
public:
OperandTuple(int n)
{
operands_ = new operandSet[n];
index_ = new int[n];
numOperands_ = n;
for (int i=0; i < numOperands_; ++i)
{
index_[i] = 0;
operands_[i].setOperandNum(i+1);
}
done_ = 0;
numSpecializations_ = 0;
}
~OperandTuple()
{
delete [] operands_;
delete [] index_;
}
int numSpecializations() const
{ return numSpecializations_; }
int operandIndex(int i) const
{ return index_[i]; }
operand& operator[](int i)
{
return operands_[i][index_[i]];
}
operator int()
{
return !done_;
}
int operator++()
{
// This version is like increment(), but it checks to make
// sure the operand tuple is valid. For example, an operand
// tuple of all scalars is not permitted, since this
// would interfere with built-in versions of +, -, etc.
do {
increment();
} while (!done_ && !isValidTuple());
++numSpecializations_;
return !done_;
}
int increment()
{
for (int j=numOperands_ - 1; j >= 0; --j)
{
if (++index_[j] != operands_[j].numOperands())
break;
if (j == 0)
{
done_ = 1;
index_[j] = 0;
break;
}
index_[j] = 0;
}
return !done_;
}
int isValidTuple()
{
// Count the number of scalar operands
int numScalars = 0;
for (int i=0; i < numOperands_; ++i)
{
if (operands_[i][index_[i]].isScalar())
++numScalars;
}
if (numScalars == numOperands_)
return 0;
return 1;
}
int anyComplex()
{
for (int i=0; i < numOperands_; ++i)
if ((*this)[i].isComplex())
return 1;
return 0;
}
void reset()
{
done_ = 0;
for (int i=0; i < numOperands_; ++i)
index_[i] = 0;
}
int numTemplates()
{
int countTemplates = 0;
for (int i=0; i < numOperands_; ++i)
countTemplates += operands_[i][index_[i]].numTemplateParameters();
return countTemplates;
}
void printTemplates(std::ostream& os)
{
if (!numTemplates())
return;
os << "template<";
int templatesWritten = 0;
for (int i=0; i < numOperands_; ++i)
{
for (int j=0; j < (*this)[i].numTemplateParameters(); ++j)
{
if (templatesWritten)
os << ", ";
(*this)[i].printTemplateType(os, j);
os << " ";
(*this)[i].printTemplate(os, j);
++templatesWritten;
}
}
os << ">";
}
void printTypes(std::ostream& os, int feedFlag = 0)
{
for (int i=0; i < numOperands_; ++i)
{
if (i > 0)
{
os << ", ";
if (feedFlag)
os << std::endl << " ";
}
(*this)[i].printName(os);
}
}
void printIterators(std::ostream& os, int feedFlag = 0)
{
for (int i=0; i < numOperands_; ++i)
{
if (i > 0)
{
os << ", ";
if (feedFlag)
os << std::endl << " ";
}
(*this)[i].printIterator(os);
}
}
void printArgumentList(std::ostream& os, int feedFlag = 0)
{
for (int i=0; i < numOperands_; ++i)
{
if (i > 0)
{
os << ", ";
if (feedFlag)
os << std::endl << " ";
}
(*this)[i].printArgument(os);
}
}
void printInitializationList(std::ostream& os, int feedFlag = 0)
{
for (int i=0; i < numOperands_; ++i)
{
if (i > 0)
{
os << ", ";
if (feedFlag)
os << std::endl << " ";
}
(*this)[i].printInitialization(os);
}
}
private:
OperandTuple() { }
OperandTuple(const OperandTuple&) { }
void operator=(const OperandTuple&) { };
operandSet* operands_;
int* index_;
int numOperands_;
int done_;
int numSpecializations_;
};
|