1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/***************************************************************************
* gmres.cpp The GMRES iterative algorithm for solving large scale
* sparse or band-limited linear systems
*
* references:
* [1] Youcef Saad and Martin H. Schultz, "GMRES: a generalized minimal
* residual algorithm for solving nonsymmetric linear systems",
* SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, July 1986, pp. 856--869
* [2] http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html
* [3] http://www.netlib.org/utk/papers/templates/node29.html
*
* Also check http://www.netlib.org/utk/papers/iterative-survey/
*
*
* Copyright (C) 2000-2006 Idesbald van den Bosch <vandenbosch.mailinglist@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Suggestions: vandenbosch.mailinglist@gmail.com
* Bugs: vandenbosch.mailinglist@gmail.com
*
* For more information, please see the ... Home Page:
*
****************************************************************************/
#include <iostream>
#include <complex>
#include <cmath>
#include <blitz/array.h>
using namespace blitz;
double norm2 (const Array<complex<double>, 1>& x)
{
return sqrt(abs(sum(x * conj(x))));
}
void checkMatrixVectorDimensions(const int M, // required number of A lines
const int N, // required number of A columns
const Array<complex<double>, 2>& A,
const Array<complex<double>, 1>& x)
// check dimensions in view of performing A*x or solving A*x = y
{
if ( A.extent(0) != M ) {
cout << "checkMatrixVectorDimensions():" << endl;
cout << "problem with A dimensions: A.extent(0) = " << A.extent(0) << endl;
cout << "M = " << M << endl;
exit(1);
}
if ( A.extent(1) != N ) {
cout << "checkMatrixVectorDimensions():" << endl;
cout << "problem with A dimensions: A.extent(1) = " << A.extent(1) << endl;
cout << "N = " << N << endl;
exit(1);
}
if ( x.extent(0) != N ) {
cout << "checkMatrixVectorDimensions():" << endl;
cout << "problem with x dimensions: x.extent(0) = " << x.extent(0) << endl;
cout << "N = " << N << endl;
exit(1);
}
}
Array<complex<double>, 1> matrixMultiply (const Array<complex<double>, 2>& A,
const Array<complex<double>, 1>& b)
{
int i, j;
const int M = A.extent(0), N = b.extent(0);
// check dimensions
checkMatrixVectorDimensions(M, N, A, b);
Array<complex<double>, 1> result(M);
result = 0.0;
for (i=0 ; i<M ; i++) {
for (j=0 ; j<N ; j++) {
result(i) += A(i,j) * b(j);
}
}
return result;
}
void triangleUpSolve(Array<complex<double>, 1>& x,
const Array<complex<double>, 2>& T,
const Array<complex<double>, 1>& y)
/*
* This function computes the solution of a linear system
* where T is a upper triangular matrix, i.e. T(i>j, j) = 0.0.
*/
{
int i, j;
const int N = y.extent(0);
// check dimensions: T must be square
checkMatrixVectorDimensions(N, N, T, y);
for (i=N-1 ; i>-1 ; i--) {
// x(i) = 1/T(i, i) * ( y(i) - sum(T(i, i+1:N-1) * x(i+1:N-1)) )
x(i) = y(i);
for (j=i+1 ; j<N ; j++) {
x(i) -= T(i, j) * x(j);
}
x(i) /= T(i, i);
}
}
void rotmat(complex<double>& cs,
complex<double>& sn,
const complex<double>& a,
const complex<double>& b)
// compute the Givens rotation matrix parameters for a and b
{
complex<double> temp;
if (b==0.0) {
cs = 1.0;
sn = 0.0;
}
else if ( abs(b) > abs(a) ) {
temp = -a/b;
sn = 1.0 / sqrt(1.0 + temp*temp);
cs = temp * sn;
}
else {
temp = -b/a;
cs = 1.0 / sqrt(1.0 + temp*temp);
sn = temp * cs;
}
}
void gmres(Array<complex<double>, 1>& x, // INPUT, OUTPUT: initial guess, converged solution
double & error, // OUTPUT: the error
int & iter, // OUTPUT: number of iterations needed
int & flag, // OUTPUT: success flag: 0 if OK
const Array<complex<double>, 2>& A, // INPUT: complex matrix
const Array<complex<double>, 1>& b, // INPUT: right-hand side
const double tol, // INPUT: tolerance on solution
const int RESTRT, // INPUT: restart number
const int MAXITER) // INPUT: max number of iterations
/*************************************************************************
* gmres solves the non-symmetric linear system Ax = b using the
* Generalized Minimum Residual method
*
* The flag output 0 indicates convergence within MAXITER
* iterations. If no convergence within MAXITER iterations: flag = 1.
*
* Upon successful return, other output arguments have the following values:
*
* x -- approximate solution to A*x = b
* iter -- the number of iterations performed before the
* tolerance was reached
* error -- the residual after the final iteration
**************************************************************************/
{
Range all = Range::all();
flag = 0;
int i, k;
const int N = b.extent(0), m = RESTRT; // size of the system
// dimensions and other checks
checkMatrixVectorDimensions(N, N, A, x);
if (RESTRT < 1) {
cout << "bad restart value. RESTRT = " << RESTRT << endl;
exit(1);
}
if (MAXITER < 1) {
cout << "bad maxiter value. MAXITER = " << MAXITER << endl;
exit(1);
}
double bnorm2 = norm2(b), rnorm2;
if (bnorm2==0.0) bnorm2 = 1.0;
complex<double> temp;
Array<complex<double>, 1> r(N);
// r = precondSolve(M, b, A, x)
// = M^(-1) * ( b-A*x )
// this will be done in a later version of the code
r = b - matrixMultiply(A, x);
error = norm2(r) / bnorm2;
if (error<tol) return;
// workspaces definitions
Array<complex<double>, 1> cs(m), sn(m), e1(m+1), s(m+1), w(N), y;
Array<complex<double>, 2> V(N, m+1), H(m+1, m);
e1 = 0.0;
e1(0) = 1.0;
for (iter=0 ; iter<MAXITER ; iter++) {
// r = precondSolve(M, b, A, x)
// = M^(-1) * ( b-A*x )
// this will be done in a later version of the code
r = b - matrixMultiply(A, x);
rnorm2 = norm2(r);
V(all, 0) = r/rnorm2;
s = rnorm2 * e1;
for (i=0 ; i<m ; i++){
// if preconditioning: w = M^(-1) * (A*V(all, i))
w = matrixMultiply(A, V(all, i));
// construct orthonormal basis using Gram-Schmidt
for (k=0 ; k<i+1 ; k++) {
H(k, i) = sum(w * conj(V(all, k)));
w -= H(k, i) * V(all, k);
}
H(i+1, i) = norm2( w );
V(all, i+1) = w / H(i+1, i);
// now we apply the GIVENS rotations
for (k=0 ; k<i ; k++) {
temp = conj(cs(k)) * H(k, i) - conj(sn(k)) * H(k+1, i);
H(k+1, i) = sn(k) * H(k, i) + cs(k) * H(k+1, i);
H(k, i) = temp;
}
// form i-th rotation matrix
rotmat(cs(i), sn(i), H(i, i), H(i+1, i));
H(i, i) = conj(cs(i)) * H(i, i) - conj(sn(i)) * H(i+1, i);
H(i+1,i) = 0.0;
// approximate residual norm
temp = conj(cs(i)) * s(i) - conj(sn(i)) * s(i+1);
s(i+1) = sn(i) * s(i) + cs(i) * s(i+1);
s(i) = temp;
error = abs(s(i+1)) / bnorm2;
// update approximation x
if ( error<=tol ) {
y.resize(i+1); // Range: 0..i
triangleUpSolve( y, H(Range(0, i), Range(0, i)), s(Range(0, i)) );
x += matrixMultiply(V(all, Range(0, i)), y);
return;
}
} // end for (i =...)
if ( error<=tol ) return;
y.resize(m); // Range: 0..m-1
triangleUpSolve( y, H(Range(0, m-1), Range(0, m-1)), s(Range(0, m-1)) );
x += matrixMultiply(V(all, Range(0, m-1)), y);
// r = precondSolve(M, b, A, x)
// = M^(-1) * ( b-A*x )
// this will be done in a later version of the code
r = b - matrixMultiply(A, x);
// check convergence
error = abs(s(m)) / bnorm2;
if ( error<=tol ) return;
} // end for (iter =...)
// bad ending...
if (error>tol) flag = 1;
}
|