1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
from scipy import *
from weave import converters
from pylab import *
def norm(x):
return sqrt(abs(sum(x * conjugate(x))))
def rotmat(a, b):
# compute the Givens rotation matrix parameters for a and b
if (b==0.0):
c, s = 1.0, 0.0
elif (abs(b) > abs(a)):
##temp = a/b
temp = -a/b
s = 1.0 / sqrt(1.0 + temp**2)
c = temp * s
else:
##temp = b/a
temp = -b/a
c = 1.0 / sqrt(1.0 + temp**2)
s = temp * c
return c, s
def myGmresPython( A, x, b, M, restrt, max_it, tol ):
iter = 0 # initialization
flag = 0
bnrm2 = norm(b)
if ( bnrm2 == 0.0 ):
bnrm2 = 1.0
#r = M \ ( b-A*x );
r = b - matrixmultiply(A, x)
error = norm( r ) / bnrm2
if ( error < tol ):
return x, error, iter, flag
n = A.shape[0] # initialize workspace
m = restrt
V = zeros((n,m+1), Complex)
H = zeros((m+1, m), Complex)
cs, sn = zeros(m, Complex), zeros(m, Complex)
e1 = zeros(m+1, Complex)
e1[0] = 1.0
for iter in range(max_it):
#r = M \ ( b-A*x )
r = b - matrixmultiply(A, x)
V[:, 0] = r / norm( r )
#print 'sum(V[:, 0]) =', sum(V[:, 0])
s = norm( r )*e1
# construct orthonormal basis using Gram-Schmidt
for i in range(m):
#w = M \ matrixmultiply(A, V[:, i])
w = matrixmultiply(A, V[:, i])
for k in range(i+1):
H[k, i] = sum(w * conjugate(V[:, k]))
w = w - H[k, i] * V[:, k]
#print "sum(w) =", sum(w)
H[i+1, i] = norm( w )
V[:, i+1] = w / H[i+1, i]
#print "sum(V[:, i+1]) =", sum(V[:, i+1])
# apply Givens rotation
for k in range(i):
##temp = cs[k] * H[k, i] + sn[k] * H[k+1, i]
##H[k+1,i] = -sn[k] * H[k, i] + cs[k] * H[k+1, i]
temp = conjugate(cs[k]) * H[k, i] - conjugate(sn[k]) * H[k+1, i]
H[k+1,i] = sn[k] * H[k, i] + cs[k] * H[k+1, i]
H[k,i] = temp
# form i-th rotation matrix
cs[i], sn[i] = rotmat( H[i, i], H[i+1, i] )
##H[i, i] = cs[i]*H[i, i] + sn[i]*H[i+1, i]
H[i, i] = conjugate(cs[i])*H[i, i] - conjugate(sn[i])*H[i+1, i]
H[i+1,i] = 0.0
#print "sum(sum(H)) =", sum(sum(H))
# approximate residual norm
##temp = cs[i] * s[i]
temp = conjugate(cs[i]) * s[i] - conjugate(sn[i]) * s[i+1]
##s[i+1] = -sn[i] * s[i]
s[i+1] = sn[i] * s[i] + cs[i] * s[i+1]
s[i] = temp;
error = abs(s[i+1]) / bnrm2
#print "error =", error
# update approximation
if ( error <= tol ):
y = linalg.solve( H[:i+1, :i+1], s[:i+1] )
x = x + matrixmultiply(V[:, :i+1], y)
return x, error, iter, flag
if ( error <= tol ):
return x, error, iter, flag
y = linalg.solve( H[:m, :m], s[:m] )
#print "sum(y) =", sum(y)
x = x + matrixmultiply(V[:, :m], y) # update approximation
#print "sum(x) =", sum(x)
#r = M \ ( b-A*x ) # compute residual
r = b - matrixmultiply(A, x)
error = abs(s[i+1]) / bnrm2 # check convergence
#print "error =", error
if ( error <= tol ):
return x, error, iter, flag
if ( error > tol ):
flag = 1
return x, error, iter, flag
def myGmresC( A, x, b, M, restrt, max_it, tol ):
error = zeros(1, Float)
flag = zeros(1, Int)
iter = zeros(1, Int)
wrapping_code = """gmres(x, error(0), iter(0), flag(0), A, b, tol, restrt, max_it);"""
weave.inline(wrapping_code,
['x', 'error', 'iter', 'flag', 'A', 'b', 'tol', 'restrt', 'max_it'],
type_converters = converters.blitz,
include_dirs = ['./MoM/iterative/'],
library_dirs = ['./MoM/iterative/'],
libraries = ['ITERATIVE'],
headers = ['<iostream>','<complex>','"gmres.h"'],
compiler = 'gcc')
return x, error[0], iter[0], flag[0]
if __name__=="__main__":
ff = open('Z.txt', 'r')
Z = pickle.load(ff)
ff.close()
ff = open('V.txt', 'r')
V = pickle.load(ff)
ff.close()
N = V.shape[0]
Y = zeros(N, Complex)
X0 = zeros(N, Complex)
M = ones((N,N),Complex64)
restart = 3
tol = 1.e-3
maxiter = 50
# scipy linalg
I = matrixmultiply(linalg.inv(Z),V)
# myGmresPython
I2, error2, iteration2, info2 = myGmresPython( Z, X0, V, M, restart, maxiter, tol )
print "error2, iteration2, info2 =", error2, iteration2, info2
# myGmresC++
X0 = zeros(N, Complex)
I3, error3, iteration3, info3 = myGmresC( Z, X0, V, M, restart, maxiter, tol )
print "error3, iteration3, info3 =", error3, iteration3, info3
print sum(I), sum(I2), sum(I3)
|