1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
bzindex(Array!multicomponent)
bzindex(multicomponent arrays)
Multicomponent arrays have elements which are vectors. Examples
of such arrays are vector fields, colour images (which contain, say,
RGB tuples), and multispectral images. Complex-valued arrays can
also be regarded as multicomponent arrays, since each element is
a 2-tuple of real values.
Here are some examples of multicomponent arrays:
bzindex(RGB24 example)
bzverb(\
// A 3-dimensional array; each element is a length 3 vector of float
Array<TinyVector<float,3>,3> A;
// A complex 2-dimensional array
Array<complex<double>,2> B;
// A 2-dimensional image containing RGB tuples
struct RGB24 {
unsigned char r, g, b;
};
Array<RGB24,2> C;
)
bzsubsect(Extracting components)
bzindex(extracting components)
bzindex(Array!extracting components)
Blitz++ provides some special support for such arrays. The most
important is the ability to extract a single component. For
example:
bzverb(
Array<TinyVector<float,3>,2> A(128,128);
Array<float,2> B = A.extractComponent(float(), 1, 3);
B = 0;
)
The call to tt(extractComponent) returns an array of floats; this
array is a view of the second component of each element of A.
The arguments of tt(extractComponent) are: (1) the type of the
component (in this example, float); (2) the component number
to extract (numbered 0, 1, ... N-1); and (3) the number of
components in the array.
This is a little bit messy, so Blitz++ provides a handy shortcut
using tt(operator[]):
bzverb(
Array<TinyVector<float,3>,2> A(128,128);
A[1] = 0;
)
The number inside the square brackets is the component number.
However, for this operation to work, Blitz++ has to already know
how many components there are, and what type they are. It
knows this already for tt(TinyVector) and tt(complex<T>).
If you use your own type, though, you will have to tell
Blitz++ this information using the macro tt(BZ_DECLARE_MULTICOMPONENT_TYPE()).
This macro has three arguments:
bzindex(BZ_DECLARE_MULTICOMPONENT_TYPE)
bzverb(\
BZ_DECLARE_MULTICOMPONENT_TYPE(T_element, T_componentType, numComponents)
)
tt(T_element) is the element type of the array. tt(T_componentType)
is the type of the components of that element. tt(numComponents) is
the number of components in each element.
An example will clarify this. Suppose we wanted to make a
colour image, stored in 24-bit HSV (hue-saturation-value) format.
We can make a class tt(HSV24) which represents a single pixel:
bzindex(HSV24 example)
bzverb(\
#include <blitz/array.h>
using namespace blitz;
class HSV24 {
public:
// These constants will makes the code below cleaner; we can
// refer to the components by name, rather than number.
static const int hue=0, saturation=1, value=2;
HSV24() { }
HSV24(int hue, int saturation, int value)
: h_(hue), s_(saturation), v_(value)
{ }
// Some other stuff here, obviously
private:
unsigned char h_, s_, v_;
};
)
Right after the class declaration, we will invoke the
macro tt(BZ_DECLARE_MULTICOMPONENT_TYPE) to tell Blitz++
about HSV24:
bzverb(\
// HSV24 has 3 components of type unsigned char
BZ_DECLARE_MULTICOMPONENT_TYPE(HSV24, unsigned char, 3);
)
Now we can create HSV images and modify the individual
components:
bzverb(\
int main()
{
Array<HSV24,2> A(128,128); // A 128x128 HSV image
...
// Extract a greyscale version of the image
Array<unsigned char,2> A_greyscale = A[HSV24::value];
// Bump up the saturation component to get a
// pastel effect
A[HSV24::saturation] *= 1.3;
// Brighten up the middle of the image
Range middle(32,96);
A[HSV24::value](middle,middle) *= 1.2;
}
)
bzsubsect(Special support for complex arrays)
bzindex(Array!complex)
bzindex(complex arrays)
Since complex arrays are used frequently, Blitz++ provides
two special methods for getting the real and imaginary components:
bzverb(\
Array<complex<float>,2> A(32,32);
real(A) = 1.0;
imag(A) = 0.0;
)
The function tt(real(A)) returns an array view of the
real component; tt(imag(A)) returns a view of the imaginary
component.
Note: Blitz++ provides numerous math functions defined
over complex-valued arrays, such as
tt(conj), tt(polar), tt(arg), tt(abs), tt(cos), tt(pow), etc.
See the section on math functions
(ref(math-functions)) for details.
bzsubsect(Zipping together expressions)
bzindex(zipping expressions)
bzindex(Array!zipping expressions)
Blitz++ provides a function tt(zip()) which lets you
combine two or more expressions into a single component.
For example, you can combine two real expressions into
a complex expression, or three integer expressions into
an HSV24 expression. The function has this syntax:
bzverb(\
resultexpr zip(expr1, expr2, T_element)
resultexpr zip(expr1, expr2, expr3, T_element) ** not available yet
resultexpr zip(expr1, expr2, expr3, expr4, T_element) ** not available yet
)
The types tt(resultexpr), tt(expr1) and tt(expr2) are
array expressions. The third argument is the type you
want to create. For example:
bzverb(\
int N = 16;
Array<complex<float>,1> A(N);
Array<float,1> theta(N);
...
A = zip(cos(theta), sin(theta), complex<float>());
)
The above line is equivalent to:
bzverb(\
for (int i=0; i < N; ++i)
A[i] = complex<float>(cos(theta[i]), sin(theta[i]));
)
|