File: arrays-multi.yo

package info (click to toggle)
blitz%2B%2B 1%3A1.0.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,016 kB
  • sloc: cpp: 56,889; python: 1,939; fortran: 1,510; f90: 852; makefile: 828; sh: 309
file content (197 lines) | stat: -rw-r--r-- 5,342 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
bzindex(Array!multicomponent)
bzindex(multicomponent arrays)
Multicomponent arrays have elements which are vectors.  Examples
of such arrays are vector fields, colour images (which contain, say,
RGB tuples), and multispectral images.  Complex-valued arrays can
also be regarded as multicomponent arrays, since each element is
a 2-tuple of real values.

Here are some examples of multicomponent arrays:

bzindex(RGB24 example)

bzverb(\

  // A 3-dimensional array; each element is a length 3 vector of float
  Array<TinyVector<float,3>,3> A;  

  // A complex 2-dimensional array
  Array<complex<double>,2> B;

  // A 2-dimensional image containing RGB tuples
  struct RGB24 {
    unsigned char r, g, b;
  };

  Array<RGB24,2> C;
)

bzsubsect(Extracting components)

bzindex(extracting components)
bzindex(Array!extracting components)

Blitz++ provides some special support for such arrays.  The most
important is the ability to extract a single component.  For
example:

bzverb(
  Array<TinyVector<float,3>,2> A(128,128);
  Array<float,2> B = A.extractComponent(float(), 1, 3);
  B = 0;
)

The call to tt(extractComponent) returns an array of floats; this
array is a view of the second component of each element of A.
The arguments of tt(extractComponent) are: (1) the type of the
component (in this example, float); (2) the component number
to extract (numbered 0, 1, ... N-1); and (3) the number of 
components in the array.

This is a little bit messy, so Blitz++ provides a handy shortcut
using tt(operator[]):

bzverb(
  Array<TinyVector<float,3>,2> A(128,128);
  A[1] = 0;
)

The number inside the square brackets is the component number.
However, for this operation to work, Blitz++ has to already know
how many components there are, and what type they are.  It
knows this already for tt(TinyVector) and tt(complex<T>).
If you use your own type, though, you will have to tell
Blitz++ this information using the macro tt(BZ_DECLARE_MULTICOMPONENT_TYPE()).
This macro has three arguments:

bzindex(BZ_DECLARE_MULTICOMPONENT_TYPE)
bzverb(\
BZ_DECLARE_MULTICOMPONENT_TYPE(T_element, T_componentType, numComponents)
)
tt(T_element) is the element type of the array.  tt(T_componentType)
is the type of the components of that element.  tt(numComponents) is
the number of components in each element.

An example will clarify this.  Suppose we wanted to make a
colour image, stored in 24-bit HSV (hue-saturation-value) format.
We can make a class tt(HSV24) which represents a single pixel:

bzindex(HSV24 example)

bzverb(\
#include <blitz/array.h>

using namespace blitz;

class HSV24 {
public:
    // These constants will makes the code below cleaner; we can
    // refer to the components by name, rather than number.

    static const int hue=0, saturation=1, value=2;

    HSV24() { }
    HSV24(int hue, int saturation, int value)
      : h_(hue), s_(saturation), v_(value)
    { }

    // Some other stuff here, obviously

private:
    unsigned char h_, s_, v_;
};
)

Right after the class declaration, we will invoke the
macro tt(BZ_DECLARE_MULTICOMPONENT_TYPE) to tell Blitz++
about HSV24:

bzverb(\
// HSV24 has 3 components of type unsigned char
BZ_DECLARE_MULTICOMPONENT_TYPE(HSV24, unsigned char, 3);
)

Now we can create HSV images and modify the individual
components:

bzverb(\
int main()
{
    Array<HSV24,2> A(128,128);   // A 128x128 HSV image
    ...

    // Extract a greyscale version of the image
    Array<unsigned char,2> A_greyscale = A[HSV24::value];

    // Bump up the saturation component to get a
    // pastel effect
    A[HSV24::saturation] *= 1.3; 

    // Brighten up the middle of the image
    Range middle(32,96);
    A[HSV24::value](middle,middle) *= 1.2;
}
)

bzsubsect(Special support for complex arrays)

bzindex(Array!complex)
bzindex(complex arrays)

Since complex arrays are used frequently, Blitz++ provides
two special methods for getting the real and imaginary components:

bzverb(\
  Array<complex<float>,2> A(32,32);

  real(A) = 1.0;
  imag(A) = 0.0;
)

The function tt(real(A)) returns an array view of the
real component; tt(imag(A)) returns a view of the imaginary
component.

Note: Blitz++ provides numerous math functions defined
over complex-valued arrays, such as
tt(conj), tt(polar), tt(arg), tt(abs), tt(cos), tt(pow), etc.
See the section on math functions 
(ref(math-functions)) for details.

bzsubsect(Zipping together expressions)

bzindex(zipping expressions)
bzindex(Array!zipping expressions)
Blitz++ provides a function tt(zip()) which lets you
combine two or more expressions into a single component.
For example, you can combine two real expressions into
a complex expression, or three integer expressions into
an HSV24 expression.  The function has this syntax:

bzverb(\
resultexpr zip(expr1, expr2, T_element)
resultexpr zip(expr1, expr2, expr3, T_element)         ** not available yet
resultexpr zip(expr1, expr2, expr3, expr4, T_element)  ** not available yet
)

The types tt(resultexpr), tt(expr1) and tt(expr2) are
array expressions.  The third argument is the type you
want to create.  For example:

bzverb(\
int N = 16;
Array<complex<float>,1> A(N);
Array<float,1> theta(N);

 ...

A = zip(cos(theta), sin(theta), complex<float>());
)

The above line is equivalent to:

bzverb(\
for (int i=0; i < N; ++i)
   A[i] = complex<float>(cos(theta[i]), sin(theta[i]));
)