1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#include "testsuite.h"
#include <blitz/array.h>
#include <blitz/array.cc>
#include <blitz/array/stencil-et.h>
#include <blitz/array/stencilops.h>
#include <blitz/array/stencil-et-macros.h>
//#include <blitz/tinyvec-et.h>
//#include <blitz/matrix.h>
//#include <blitz/tinymatexpr.h>
#include <random/uniform.h>
using namespace blitz;
// Tests that the various stencil operators work with
// expressions. Does NOT test that the stencils produce the correct
// output, only that they compile and that the output is consistent
// between different identical expressions.
typedef blitz::Array<double,1> array_1;
typedef blitz::Array<double,2> array_2;
typedef blitz::Array<double,3> array_3;
typedef Array<TinyVector<double, 2>, 2> array_2v;
typedef Array<TinyMatrix<double, 2, 2>, 2> array_2m;
typedef Array<TinyVector<double, 3>, 3> array_3v;
typedef Array<TinyMatrix<double, 3, 3>, 3> array_3m;
// test with functors
class doubler {
public:
double operator()(double x) const {return 2.0*x;}
BZ_DECLARE_FUNCTOR(doubler);
};
class multiplier {
public:
double operator()(double a, double b) const {return a*b;}
BZ_DECLARE_FUNCTOR2(multiplier);
};
/*
// Test two expressions for equality
template<typename T1, typename T2>
void test_expr(const T1& d1, const T2& d2)
{
BZTEST(all(d1==d2));
}
*/
#define test_expr(d1,d2) BZTEST(all((d1)==(d2)));
// Test two vector expressions for equality
template<typename T1, typename T2>
void test_vexpr(const T1& d1, const T2& d2)
{
Array<typename T1::T_numtype, T1::rank_> a(d1),b(d2);
for(int i=0; i<T1::T_numtype::numElements(); ++i)
BZTEST(all(a[i]==b[i]));
}
// Test two matrix expressions for equality
template<typename T1, typename T2>
void test_mexpr(const T1& d1, const T2& d2)
{
// there appears to be no way to tell the size of a TinyMatrix... or to compare them.
// so for now we're happy just to have the call succeed.
}
BZ_DECLARE_DIFF(shifter) {
return A.shift(1,dim); }
BZ_ET_STENCIL_DIFF(shifter, 1,1)
int main()
{
// create some arrays to operate on
const int sz=5;
ranlib::Uniform<float> rnd;
rnd.seed(42);
array_3 field3(sz,sz+1,sz+2), result3(sz,sz+1,sz+2),
fx(field3.shape()), fy(field3.shape()), fz(field3.shape());
for(int i=0; i<field3.size();++i) {
field3.data()[i]=rnd.random();
fx.data()[i]=rnd.random();
fy.data()[i]=rnd.random();
fz.data()[i]=rnd.random();
}
array_2 field2(sz,sz+1), result2(field2.shape());
field2=sin(0.5*(tensor::i+2*tensor::j));
array_3v vfield3(field3.shape());
vfield3[0]=fx;
vfield3[1]=fy;
vfield3[2]=fz;
array_2v vfield2(sz,sz+1);
vfield2[0]=vfield3(Range::all(), Range::all(), 0)[0];
vfield2[1]=vfield3(Range::all(), Range::all(), 0)[1];
doubler doubleit;
multiplier multiplyit;
// Now apply "all" possible stencil types to arrays and expressions,
// as well as recursive applications
// defined with BZ_ET_STENCIL:
test_expr(Laplacian2D(field2), Laplacian2D(1.0*field2));
test_expr(Laplacian2D(field2), 1.0*Laplacian2D(field2));
test_expr(Laplacian2D(const_cast<const array_2&>(field2)),
Laplacian2D(1.0*field2));
test_expr(Laplacian2D(Laplacian2D(field2)),
Laplacian2D(Laplacian2D(1.0*field2)));
test_expr(Laplacian2D(Laplacian2D(field2)),
Laplacian2D(1.0*Laplacian2D(field2)));
test_expr(Laplacian2D(Laplacian2D(field2+field2)),
Laplacian2D(Laplacian2D(field2)+Laplacian2D(field2)));
test_expr(Laplacian2D(field3), Laplacian2D(1.0*field3));
// and some more complicated expressions and assignments
result2(_bz_shrinkDomain(result2.domain(),shape(-1,-1),shape(1,1))) =
Laplacian2D(where(field2>0.5,0.,1.));
test_expr(result2(_bz_shrinkDomain(result2.domain(),shape(-1,-1),shape(1,1))),
Laplacian2D(where(field2>0.5,0.,1.)));
test_expr(where(Laplacian2D(field2)>0.5,0.,1.),
where(Laplacian2D(2*field2)>1,0.,1.));
test_expr(where(Laplacian2D(field2)>0.5,
0.0*field2(_bz_shrinkDomain(result2.domain(),shape(-1,-1),shape(1,1))),
0.0*field2(_bz_shrinkDomain(result2.domain(),shape(-1,-1),shape(1,1)))+2.0),
2*where(Laplacian2D(2*field2)>1.0, 0., 1.));
test_expr(Laplacian2D(2.0*field2), Laplacian2D(doubleit(field2)));
test_expr(Laplacian2D(field2*field3(0,Range(0,sz-1), Range(1,sz+1))),
Laplacian2D(multiplyit(field2, field3(0,Range(0,sz-1), Range(1,sz+1)))));
// reductions of stencil results
{
array_2 temp(Laplacian2D(field2));
BZTEST(sum(temp) == sum(Laplacian2D(field2)));
test_expr(sum(temp, tensor::j), sum(Laplacian2D(field2), tensor::j));
}
{
array_3 temp(Laplacian2D(field3));
BZTEST(sum(temp) == sum(Laplacian2D(field3)));
test_expr(sum(temp, tensor::k), sum(Laplacian2D(field3), tensor::k));
}
// and expressions involving index remappings. we do these on arrays
// with different sizes in all dimensions to make it less likely we
// don't detect a screwup
test_expr(shifter(field2,firstDim),
shifter(field2(tensor::i, tensor::j),firstDim));
{
array_2 temp(field2(tensor::j, tensor::i));
test_expr(shifter(temp,firstDim),
shifter(field2(tensor::j, tensor::i),firstDim));
test_expr(shifter(temp,secondDim),
shifter(field2(tensor::j, tensor::i),secondDim));
}
test_expr(shifter(field3,firstDim),
shifter(field3(tensor::i, tensor::j, tensor::k),firstDim));
test_expr(shifter(field3,thirdDim),
shifter(field3(tensor::i, tensor::j, tensor::k),thirdDim));
{
array_3 temp(shifter(field3,thirdDim));
test_expr(temp(tensor::i, tensor::k, tensor::j),
shifter(field3(tensor::i, tensor::k, tensor::j),secondDim));
}
{
array_3 temp(Laplacian3D(field3));
test_expr(temp(tensor::k, tensor::i, tensor::j),
Laplacian3D(field3(tensor::k, tensor::i, tensor::j)));
}
{
array_3 temp(field3.shape());
temp=field3(tensor::i, tensor::j, tensor::k)*field2(tensor::i, tensor::j);
test_expr(Laplacian3D(temp),
Laplacian3D(field3(tensor::i, tensor::j, tensor::k)*
field2(tensor::i, tensor::j)));
test_expr(mixed22(temp, firstDim, secondDim),
mixed22(field3(tensor::i, tensor::j, tensor::k)*
field2(tensor::i, tensor::j), firstDim, secondDim));
}
/* index placeholders don't work
{ array_3 temp(field3.shape());
temp=100*tensor::k+10*tensor::j+tensor::i;
test_expr(Laplacian3D(temp), Laplacian3D(100*tensor::k+10*tensor::j+tensor::i));
}
*/
// defined with BZ_ET_STENCIL2:
test_expr(div(vfield2[0],vfield2[1]),
div(vfield2[0],1.0*vfield2[1]));
test_expr(div(vfield2[0],vfield2[1]),
div(1.0*vfield2[0],vfield2[1]));
test_expr(div(vfield2[0],vfield2[1]),
div(1.0*vfield2[0],1.0*vfield2[1]));
test_expr(div(vfield2[0],vfield2[1]),
div(1.0*vfield2[0],const_cast<const array_2v&>(vfield2)[1]));
test_expr(div(vfield2[0],vfield2[1]),
div(const_cast<const array_2v&>(vfield2)[0],
const_cast<const array_2v&>(vfield2)[1]));
// defined with BZ_ET_STENCILM.
test_mexpr(Jacobian3D(vfield3),
Jacobian3D(const_cast<const array_3v&>(vfield3)));
test_mexpr(Jacobian3D(vfield3),
Jacobian3D(1.0*vfield3));
test_mexpr(Jacobian3D(const_cast<const array_3v&>(vfield3)),
Jacobian3D(1.0*vfield3));
// defined with BZ_ET_STENCILV
test_vexpr(grad3D(field3),
grad3D(const_cast<const array_3&>(field3)));
test_vexpr(grad3D(field3),
grad3D(1.0*field3));
// defined with BZ_ET_STENCIL_SCA
test_expr(div2D(vfield2),
div2D(const_cast<const array_2v&>(vfield2)));
test_expr(div2D(vfield2),
div2D(1.0*vfield2));
// defined with BZ_ET_STENCIL_DIFF
test_expr(central12(field3, firstDim),
central12(const_cast<const array_3&>(field3), firstDim));
test_expr(central12(field3, firstDim),
central12(1.0*field3, firstDim));
result2(_bz_shrinkDomain(result2.domain(),shape(0,-1),shape(0,1))) =
central12(where(field2>0.5,0.,1.), secondDim);
test_expr(result2(_bz_shrinkDomain(result2.domain(),shape(0,-1),shape(0,1))),
central12(where(field2>0.5,0.,1.), secondDim));
test_expr(where(central12(field2,firstDim)>0.5,0.,1.),
where(central12(2*field2, firstDim)>1,0.,1.));
test_expr(where(central12(field2, firstDim)>0.5,
0.0*field2(_bz_shrinkDomain(field2.domain(),shape(-1,0),shape(1,0))),
0.0*field2(_bz_shrinkDomain(field2.domain(),shape(-1,0),shape(1,0)))+2.0),
2*where(central12(2*field2, firstDim)>1.0, 0., 1.));
test_expr(central12(sin(1.0*field3),thirdDim),
central12(1.0*sin(field3), thirdDim));
result2 = pow(field3(Range::all(), 1, Range(0,sz)), field2);
test_expr(central12(result2, secondDim),
central12(pow(field3(Range::all(), 1, Range(0,sz)), 1.0*field2), secondDim));
// defined with BZ_ET_STENCIL_MULTIDIFF
test_expr(central12(vfield3, firstDim, secondDim),
central12(const_cast<const array_3v&>(vfield3), firstDim, secondDim));
array_3v ee(1.0*vfield3);
test_expr(central12(vfield3, firstDim, secondDim),
central12(1.0*vfield3, firstDim, secondDim));
test_expr(where(central12(vfield2, firstDim, secondDim)>0.5,
0.0*field2(_bz_shrinkDomain(field2.domain(),shape(0,-1),shape(0,1))),
0.0*field2(_bz_shrinkDomain(field2.domain(),shape(0,-1),shape(0,1)))+2.0),
2*where(central12(2*vfield2, firstDim, secondDim)>1.0, 0., 1.));
// defined with BZ_ET_STENCIL_DIFF2
test_expr(mixed22(field3, firstDim, secondDim),
mixed22(const_cast<const array_3&>(field3), firstDim, secondDim));
test_expr(mixed22(field3, firstDim, secondDim),
mixed22(1.0*field3, firstDim, secondDim));
test_expr(where(mixed22(field3, thirdDim, secondDim)>0.5,
0.0*field3(_bz_shrinkDomain(field3.domain(),shape(0,-1,-1),shape(0,1,1))),
0.0*field3(_bz_shrinkDomain(field3.domain(),shape(0,-1,-1),shape(0,1,1)))+2.0),
2*where(mixed22(2*field3, thirdDim, secondDim)>1.0, 0., 1.));
return 0;
}
|