File: Union3.lua

package info (click to toggle)
blobby 1.1.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,944 kB
  • sloc: cpp: 22,442; xml: 779; python: 56; makefile: 3
file content (542 lines) | stat: -rw-r--r-- 16,297 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
-- UNION - Version 3
-- re - implemented the action selection system in a clearer way
--UNION
--27.3.2007 - version 2
--Enormator
-- 11.01.12 - insert game-provided physic constants where possible - by ngc92
-- 11.04.15 - updated math helper functions


ActiveFunction = nil
ActiveMode = nil
FunctionTable = {}
ModeInit = false

-- success tracking
LastDecision = {}
OldDecisions = {}
--  TODO automatic setup of these variables
OldDecisions[1] = {}
OldDecisions[2] = {}

--define world constants
netheight = CONST_NET_HEIGHT + CONST_NET_RADIUS -- height is just the rod. for total height, we have to add the net-sphere-radius too

-- capture situational information
function capture_situation_data()
	local x, y, vx, vy = balldata
	local data = {}
	data['ballx'] = x
	data['bally'] = y
	data['bspeedx'] = vx
	data['bspeedy'] = vy
	data['posx'] = posx()
	data['posy'] = posy()
	data['touches'] = touches()
	return data
end

-- called when opponent server
function OnOpponentServe()
	if ActiveMode ~= "oppserve" then 
		ActiveMode = "oppserve"
		-- print last decision
		print("Lost Round. Last Decision: ")
		for i, v in pairs(LastDecision) do
			print(i, v)
		end
		print("Old Decision: ")
		for j, d in ipairs(OldDecisions) do
			print("#", j)
			for i, v in pairs(d) do
				print(i, v)
			end
		end
		
		print("Decisions: ")
		for i, v in pairs(FunctionTable) do
			print(i, v['frq'])
		end
		decide()
	end
		
	ActiveFunction()
end

-- called when bot has to server
function OnServe( ballready )
	
	-- move to center until ball ready
	if ballready then
		if ActiveMode ~= "serve" then 
			ActiveMode = "serve"
			decide() 
		end
		ActiveFunction()
	else
		moveto(200)
	end
end

-- called every time step
function OnGame()
	-- end of serve detection:
	if ActiveMode == "serve" and ballx() > CONST_BALL_LEFT_NET + CONST_BALL_RADIUS then ActiveMode = "game" end
	if ActiveMode == "oppserve" then ActiveMode = "game" end
	
	ActiveFunction()
end

-- called whenever the ball bounces somewhere: this is when we decide which strategy to use
function OnBounce()
	decide()
end

-- function for selecting a new strategy
function decide()
	local best_score = -1
	local best_fun   = nil
	
	-- decide which function to use
	for index, value in pairs(FunctionTable) do
		-- is the function eligible for the current mode
		if value[ActiveMode] == true then
			local score = value['decide']()
			-- and has a better score
			if score > best_score then
				best_score = score
				best_fun = value
			end
		end
	end
	
	-- update active function
	ActiveFunction = best_fun['act']
	best_fun['frq'] = best_fun['frq'] + 1
	
	print("decide", best_fun['name'], best_score, ballx(), bally(), bspeedx(), bspeedy())
	
	-- track decsions to debug bot
	OldDecisions[3] = OldDecisions[2]
	OldDecisions[2] = OldDecisions[1]
	OldDecisions[1] = LastDecision
	--for i,v in pairs(LastDecision) do
	--	OldDecision[i] = v
	--end
	
	LastDecision = capture_situation_data()
	LastDecision['score'] = best_score
	LastDecision['estim_head'] = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	LastDecision['action'] = best_fun['name']
end

-- registers a new function to be used by the bot
function register(name, decision, action, modes)
	-- save function name, decision function, action function and call frequency
	local rec = {name=name, decide=decision, act=action, frq = 0}
	for i, v in ipairs(modes) do
		if v == "serve" or v == "oppserve" or v == "game" then
			rec[v] = true
		end
	end
	
	FunctionTable[name] = rec
end

---------------------------------------------------------------------------------
--  			 now come the function implementations
---------------------------------------------------------------------------------

function std45deg_d(funcno)		  	--plays ball in the air at height maxjump with 45° angle
	local maxjump  = CONST_BLOBBY_MAX_JUMP
	local distance = CONST_BALL_RADIUS
	local targetx, velx, balltime  = estimate_x_at_y (maxjump)
	targetx = targetx - distance
	local blobtime = math.max(blobtimetoy(maxjump), blob_time_to_x(targetx))
	
	--print("45", targetx, velx, balltime, blobtime)
	if targetx ~= math.huge and velx <= 3 and balltime >= blobtime and not launched() then
		return math.min(10^(-math.abs(velx)),1)*(70 + math.random() * 30)
	else
		return -1
	end
end

function std45deg_a (funcno, action) --spielt Ball aus der Luft bei maxjump im 45° Winkel an
                                   --plays ball in the air at height maxjump with 45° angle
                                   --funcno(s)=2,3
	local maxjump  = CONST_BLOBBY_MAX_JUMP
	local distance = CONST_BALL_RADIUS
	local targetx, velx, balltime  = estimate_x_at_y (maxjump)
	targetx = targetx - distance
	moveto (targetx)
	
	-- time the jump
	local blobtime = math.max(blobtimetoy(maxjump), blob_time_to_x(targetx))
	if balltime <= blobtime or launched() then
		jump()
	end
end

register("std45deg", std45deg_d, std45deg_a, {"game"})

--
function twohitserve_d() 	--Aufschlag: Stellen (bspeedx()=0), rueber
                                       --serve: up (bspeedx()=0), play
                                       --funcno(s)=2
  return math.random(10, 100)
end

function twohitserve_a()
	if (touches()==0) then
		if(moveto (200)) then
			jump()
		end
	elseif (touches()==1) then
		moveto(estimate_x_at_y(CONST_BLOBBY_MAX_JUMP)-45)
		if (bally()<580) and (bspeedy()<0) then
			jump()
		end
	end
end

register("twohitserve", twohitserve_d, twohitserve_a, {"serve"})


function takelow_d() --Ballannahme ohne Sprung zum Stellen (bspeedx()=0) selten exakt
                                  --take ball without jump to create a ball with bspeedx()=0 (sellen exactly)
                                  --funcno(s)=3
	-- check that we still can do two more touches
	if (touches() > 1) then
		return -1
	end
	
	-- check that ball is reachable
	local estimpos = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if ( estimpos > CONST_BALL_RIGHT_NET ) then
		return -1
	end
	
	-- check that I have enough time to get the ball, in the worst case even barely
	local blobtime = blob_time_to_x( estimpos )
	local balltime = ball_time_to_y(CONST_BALL_BLOBBY_HEAD)
	if balltime < blobtime - 2 then
		print("UNREACHABLE", balltime, blobtime, posx(), ballx(), bspeedx(), estimpos)
		return -1
	end
	
	-- if we have some time buffer, it is better
	if balltime > blobtime + 5 then
		return 2 + math.random()
	else
		return 1
	end
end

function takelow_a() --Ballannahme ohne Sprung zum Stellen (bspeedx()=0) selten exakt
                                  --take ball without jump to create a ball with bspeedx()=0 (sellen exactly)
                                  --funcno(s)=3
	local target = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if target ~= math.huge then
		moveto ( target )
	else
		-- we are screwed anyways ... just one last attempt
		print("Fuck :(")
		moveto( ballx() )
	end
end

register("takelow", takelow_d, takelow_a, {"game"})

-- -------------------------------------------------------------------------------------------------------------
--		low play: plays the ball to the other side 

function lowplay_d() 
	-- check that ball is reachable
	local estimpos = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	-- since we want to play the ball directly over the net, we need some space
	if ( estimpos > CONST_BALL_LEFT_NET - 2 * CONST_BALL_RADIUS) then
		return -1
	end
	
	-- check that I have enough time to get the ball, in the worst case even barely
	local blobtime = blob_time_to_x( estimpos )
	local balltime = ball_time_to_y( CONST_BALL_BLOBBY_HEAD )
	if balltime < blobtime + 5 then
		return -1
	end
	
	-- if we have some time buffer, it is better
	return 1 + (50 + math.random() * 30)*(1 - estimpos / CONST_FIELD_MIDDLE)
end

function lowplay_a()
	local target, v, t, py, vy = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if target == math.huge then
		target, py, v, vy = estimate(1)
		t = 1
	end
	moveto ( target )
	-- if we are almost there, think about careful aiming
	if t < 10 and math.abs(posx() - target) < 5 * CONST_BLOBBY_SPEED then
		local tf = function(bx, by, vx, vy)
			if vx < 0 then return -1 end
			local aim = estimate_x_at_y(CONST_BALL_BLOBBY_HEAD, bx, by, vx, vy)
			--print(aim, bx, by, vx, vy)
			if aim < CONST_BALL_RIGHT_NET then
				return -1
			end
			
			-- estimate whether the ball will cross the net safely
			local ttn = (CONST_FIELD_MIDDLE - bx) / vx
			local yan = by + 0.5 * ttn^2 * CONST_BALL_GRAVITY + ttn * vy
			if yan < CONST_BALL_TOP_NET + CONST_BALL_RADIUS then
				return -1
			end
			
			-- number of steps the enemy needs to get to the ball
			local getsteps = math.abs(aim - oppx())/CONST_BLOBBY_SPEED
			local bsteps = math.abs(vy / CONST_BALL_GRAVITY)
			return 2 * bsteps / getsteps + math.max(0, getsteps - bsteps)
		end
		-- correctly round time to get full step ball coordinates
		print(py, vy)
		local ac, score = aim(posx(), posy(), target, py, tf, math.ceil(t))
		if ac then
			moveto(posx() + CONST_BLOBBY_SPEED * ac)
		end
	end
end

register("lowplay", lowplay_d, lowplay_a, {"game"})

-- block function
function block_d()
	if bspeedx() > 0 then
		return -1
	end
	
	-- check when ball crosses net
	local time, bx, by, velx, vely = simulate_until( ballx(), bally(), bspeedx(), bspeedy(), "x", CONST_FIELD_MIDDLE )
	
	if time < 0 or by < CONST_BALL_TOP_NET then
		return -1
	end
	
	-- allow for an additional five frames after net passage to catch the ball
	if not can_blob_reach(time+5, posx(), bx, by) then
		return -1
	end
	
	local owntime = blob_time_to_x( CONST_FIELD_MIDDLE - CONST_BLOBBY_BODY_RADIUS )
	local posscore = math.max(0, 5 - (by - CONST_BALL_TOP_NET) / CONST_BALL_RADIUS) * 5
	local velscore = 125 / (math.abs(vely) + 5)
	local ecatchbonus = 0
	if not can_blob_reach(time, oppx(), bx, by) then
		ecatchbonus = 10
	end
	
	-- todo incorporate estimates about enemy blocking etc.
	
	return 1 + (posscore + velscore) * (1 + math.random()) + ecatchbonus
end

function block_a()
	local time, bx, by, velx, vely = simulate_until( ballx(), bally(), bspeedx(), bspeedy(), "x", CONST_FIELD_MIDDLE )
	moveto ( CONST_FIELD_MIDDLE )
	if blob_time_to_y(by) <= time + 1 or launched() then
		jump()
	end
end

register("block", block_d, block_a, {"game"})

-- wait function
function wait_d() -- decides whether wait is a viable option: only whenn ball will hit ground in opponents
				  -- field
	local estimpos = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if ( estimpos < CONST_BALL_RIGHT_NET ) then
		return -1
	else
		return 0
	end
end

function wait_a()
	-- make sure that we are not waiting if the ball, by some fluke, now actually does land on our side
	local estimpos = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if ( estimpos < CONST_BALL_RIGHT_NET ) then
		print("STOP_WAIT")
		decide()
	end
	moveto(200)
end

register("wait", wait_d, wait_a, {"serve", "oppserve", "game"})

-- emergency safe functiom
function emergency_d() -- cannot be better than zero, but is a last try if everything else fails
	local estimpos = estimate_x_at_y( CONST_BALL_BLOBBY_HEAD )
	if ( estimpos > CONST_BALL_RIGHT_NET or not is_ball_valid() ) then
		return -1
	end
	return 0
end

function emergency_a() -- try to catch the ball by any means necessary
	-- need some desperate try to get it over the net?
	local back = 0
	if touches() == 2 then
		back = -10
	end
	
	-- first option: the ball is slower than my movement
	if math.abs(bspeedx()) < CONST_BLOBBY_SPEED then
		moveto( ballx() + back )
		return
	end
	
	
	-- this is the last position where we might still get the ball
	local time1 = ball_time_to_y(CONST_BALL_BLOBBY_HEAD)
	local time2 = ball_time_to_y(CONST_BALL_BLOBBY_HEAD - CONST_BALL_RADIUS)
	local resultX, estimbspeedx = estimx(time1)
	
	-- can we get there before the ball. 
	local time_to_impact = blob_time_to_x( resultX )
	if time_to_impact < time1 then
		-- do 
		moveto( resultX + back )
		return
	else
		local pos_em, v = estimx(time2)
		time_to_impact = blob_time_to_x(pos_em)
		if time_to_impact < time2 then
			moveto(pos_em)
			return
		end
	end
	
	print("PANIC!")
	
	-- ok, we need to catch the ball somewhere in flight!
	-- first, we can estimate the time the ball we need
	-- at least to reach the ball
	local time_x_dist = math.abs((posx() - ballx())/(math.abs(bspeedx()) + CONST_BLOBBY_SPEED))
	local bx, by, vx, vy = estimate(time_x_dist)
	-- starting from here, we can find out if the ball is within our reach
	for i = 0,50,2 do
		if can_blob_reach(time_x_dist + i, posx(), bx, by) then
			moveto(bx)
			print("Rescue possible")
			return
		end
		 bx, bx, vx, vy = estimate(time_x_dist, bx, by, vx, vy)
	end
	
	
	-- this does not work if the ball goes to x using an indirect route!
	-- we need to account for that!
	local time_to_blob_direct = ball_time_to_x(posx())
	
	-- if there is an impact along the way, and the ball does not reach the blobby directly
	if time_to_blob == math.huge and estimbspeedx ~= bspeedx() then
		time_to_blob = time1 - math.abs( (posx() - resultX)/ estimbspeedx )
	end
	
	-- will the ball pass over the blobby?
	if time_to_blob == math.huge then
		moveto(resultX + back)
		-- FUUUUUU :(
	else
		-- find out at which height the ball passes, and how long a jump to that height takes
		--print("ttb", time_to_blob)
		local by = estimy( time_to_blob )
		-- the ball passes the ground before getting to the blob. This should only happen with a wallhit
		if by < CONST_BALL_BLOBBY_HEAD - CONST_BALL_RADIUS / 2 then
			moveto(hit)
			return
		end
		local jumptime = blobtimetoy( by - CONST_BLOBBY_HEIGHT/2 )
		local timeframe = CONST_BALL_RADIUS / 2 / math.abs(bspeedx())	-- gets the timeframe we have for planning our ball collision
		
		print(by, jumptime, time_to_blob)
		
		-- we can just stand here and wait for the ball to pass over us. we only need to react when jumptime > time_to_blob
		if jumptime > time_to_blob then
			-- if the ball moves very slowly horizontally, we have to act differently: the time till it hits our exavt position might be low, 
			-- but we might have a lot of time until it leaves our sphere of influence
		
		
			jump()
			-- how much time to we miss; correct aim
			local td = jumptime - time_to_blob
			moveto( posx() + estimbspeedx * td + back )
		end
	end
end

register("emergency", emergency_d, emergency_a, {"game"})

--mathematische Hilfsfunktionen

function blobtimetoy (y) --Zeit, die ein Blob braucht, um eine Y Position zu erreichen
                         --time needed by a blob to reach a given y coordinate
 if (y>383) then
  y=383
 end
 local grav = CONST_BLOBBY_GRAVITY / 2    -- half, because we use jump buffer
 local time1 = -CONST_BLOBBY_JUMP/grav + math.sqrt(2*grav*(y-posy()) + CONST_BLOBBY_JUMP*CONST_BLOBBY_JUMP) / grav
 local time2 = -CONST_BLOBBY_JUMP/grav - math.sqrt(2*grav*(y-posy()) + CONST_BLOBBY_JUMP*CONST_BLOBBY_JUMP) / grav
 local timemin=math.min(time1,time2)
 if timemin <0 then
	return math.max(time1,time2)
 end
 return timemin
end

-- aiming submodule --
function simulateBallBlobbyContact(blobx, bloby, ballx, bally)
	local dx = ballx - blobx
	local dy1 = bally - bloby + CONST_BLOBBY_BODY_OFFSET
	local dy2 = bally - bloby + CONST_BLOBBY_HEAD_OFFSET
	
	if dx^2 + dy1^2 < (CONST_BALL_RADIUS + CONST_BLOBBY_BODY_RADIUS)^2 then
		local l = math.sqrt(dx^2 + dy1^2)
		return true, CONST_BALL_HITSPEED * dx / l, CONST_BALL_HITSPEED * dy1 / l
	end
	
	if dx^2 + dy2^2 < (CONST_BALL_RADIUS + CONST_BLOBBY_HEAD_RADIUS)^2 then
		local l = math.sqrt(dx^2 + dy2^2)
		return true, CONST_BALL_HITSPEED * dx / l, CONST_BALL_HITSPEED * dy2 / l
	end
	
	return false
end

-- this function finds out how the blobby has to move to hit the ball such that it fulfills the target condition best
-- note that target has to be a function of (ballx, bally, bspeedx, bspeedy), that returns a score. bloby and ballyalready in a position 
-- have to be chosen such that we are where an impact can happen.
function aim( blobx, bloby, ballx, bally, target, maxt )
	assert( bally ~= nil )
	maxt = maxt or 5
	-- limit calculation
	if maxt > 10 then
		maxt = 10
	end
	
	local best = -1
	local optimal = nil
	for dx = -maxt, maxt do
		local hit, vx, vy = simulateBallBlobbyContact(blobx + dx * CONST_BLOBBY_SPEED, bloby, ballx, bally)
		if hit then
			local score = target(ballx, bally, vx, vy)
			if score > best then
				best = score
				optimal = dx
			end
		end
	end
	
	return optimal, best
end