File: bltUnixImage.c

package info (click to toggle)
blt 2.5.3%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 24,864 kB
  • sloc: ansic: 133,724; tcl: 17,680; sh: 2,722; makefile: 799; cpp: 370
file content (1345 lines) | stat: -rw-r--r-- 38,466 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

/*
 * bltUnixImage.c --
 *
 *	This module implements image processing procedures for the BLT
 *	toolkit.
 *
 * Copyright 1997-1998 Lucent Technologies, Inc.
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and without fee is hereby
 * granted, provided that the above copyright notice appear in all
 * copies and that both that the copyright notice and warranty
 * disclaimer appear in supporting documentation, and that the names
 * of Lucent Technologies any of their entities not be used in
 * advertising or publicity pertaining to distribution of the software
 * without specific, written prior permission.
 *
 * Lucent Technologies disclaims all warranties with regard to this
 * software, including all implied warranties of merchantability and
 * fitness.  In no event shall Lucent Technologies be liable for any
 * special, indirect or consequential damages or any damages
 * whatsoever resulting from loss of use, data or profits, whether in
 * an action of contract, negligence or other tortuous action, arising
 * out of or in connection with the use or performance of this
 * software.
 */

#include "bltInt.h"
#include "bltImage.h"
#include "bltHash.h"
#include <X11/Xutil.h>
#include <X11/Xproto.h>

#define CLAMP(c)	((((c) < 0.0) ? 0.0 : ((c) > 255.0) ? 255.0 : (c)))

int redAdjust, greenAdjust, blueAdjust;
int redMaskShift, greenMaskShift, blueMaskShift;


/*
 *----------------------------------------------------------------------
 *
 * ShiftCount --
 *
 *	Returns the position of the least significant (low) bit in
 *	the given mask.
 *
 *	For TrueColor and DirectColor visuals, a pixel value is
 *	formed by OR-ing the red, green, and blue colormap indices
 *	into a single 32-bit word.  The visual's color masks tell
 *	you where in the word the indices are supposed to be.  The
 *	masks contain bits only where the index is found.  By counting
 *	the leading zeros in the mask, we know how many bits to shift
 *	to the individual red, green, and blue values to form a pixel.
 *
 * Results:
 *      The number of the least significant bit.
 *
 *----------------------------------------------------------------------
 */
static int
ShiftCount(mask)
    register unsigned int mask;
{
    register int count;

    for (count = 0; count < 32; count++) {
	if (mask & 0x01) {
	    break;
	}
	mask >>= 1;
    }
    return count;
}

/*
 *----------------------------------------------------------------------
 *
 * CountBits --
 *
 *	Returns the number of bits set in the given mask.
 *
 *	Reference: Graphics Gems Volume 2.
 *	
 * Results:
 *      The number of bits to set in the mask.
 *
 *
 *----------------------------------------------------------------------
 */
static int
CountBits(mask)
    register unsigned long mask; /* 32  1-bit tallies */
{
    /* 16  2-bit tallies */
    mask = (mask & 0x55555555) + ((mask >> 1) & (0x55555555));  
    /* 8  4-bit tallies */
    mask = (mask & 0x33333333) + ((mask >> 2) & (0x33333333)); 
    /* 4  8-bit tallies */
    mask = (mask & 0x07070707) + ((mask >> 4) & (0x07070707));  
    /* 2 16-bit tallies */
    mask = (mask & 0x000F000F) + ((mask >> 8) & (0x000F000F));  
    /* 1 32-bit tally */
    mask = (mask & 0x0000001F) + ((mask >> 16) & (0x0000001F));  
    return mask;
}

static void
ComputeMasks(visualPtr)
    Visual *visualPtr;
{
    int count;

    redMaskShift = ShiftCount((unsigned int)visualPtr->red_mask);
    greenMaskShift = ShiftCount((unsigned int)visualPtr->green_mask);
    blueMaskShift = ShiftCount((unsigned int)visualPtr->blue_mask);

    redAdjust = greenAdjust = blueAdjust = 0;
    count = CountBits((unsigned long)visualPtr->red_mask);
    if (count < 8) {
	redAdjust = 8 - count;
    }
    count = CountBits((unsigned long)visualPtr->green_mask);
    if (count < 8) {
	greenAdjust = 8 - count;
    }
    count = CountBits((unsigned long)visualPtr->blue_mask);
    if (count < 8) {
	blueAdjust = 8 - count;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TrueColorPixel --
 *
 *      Computes a pixel index from the 3 component RGB values.
 *
 * Results:
 *      The pixel index is returned.
 *
 *----------------------------------------------------------------------
 */
static INLINE unsigned int
TrueColorPixel(visualPtr, pixelPtr)
    Visual *visualPtr;
    Pix32 *pixelPtr;
{
    unsigned int red, green, blue;

    /*
     * The number of bits per color may be less than eight. For example,
     * 15/16 bit displays (hi-color) use only 5 bits, 8-bit displays
     * use 2 or 3 bits (don't ask me why you'd have an 8-bit TrueColor
     * display). So shift off the least significant bits.
     */
    red = ((unsigned int)pixelPtr->Red >> redAdjust);
    green = ((unsigned int)pixelPtr->Green >> greenAdjust);
    blue = ((unsigned int)pixelPtr->Blue >> blueAdjust);

    /* Shift each color into the proper location of the pixel index. */
    red = (red << redMaskShift) & visualPtr->red_mask;
    green = (green << greenMaskShift) & visualPtr->green_mask;
    blue = (blue << blueMaskShift) & visualPtr->blue_mask;
    return (red | green | blue);
}

/*
 *----------------------------------------------------------------------
 *
 * DirectColorPixel --
 *
 *      Translates the 3 component RGB values into a pixel index.
 *      This differs from TrueColor only in that it first translates
 *	the RGB values through a color table.
 *
 * Results:
 *      The pixel index is returned.
 *
 *----------------------------------------------------------------------
 */
static INLINE unsigned int
DirectColorPixel(colorTabPtr, pixelPtr)
    struct ColorTableStruct *colorTabPtr;
    Pix32 *pixelPtr;
{
    unsigned int red, green, blue;

    red = colorTabPtr->red[pixelPtr->Red];
    green = colorTabPtr->green[pixelPtr->Green];
    blue = colorTabPtr->blue[pixelPtr->Blue];
    return (red | green | blue);
}

/*
 *----------------------------------------------------------------------
 *
 * PseudoColorPixel --
 *
 *      Translates the 3 component RGB values into a pixel index.
 *      This differs from TrueColor only in that it first translates
 *	the RGB values through a color table.
 *
 * Results:
 *      The pixel index is returned.
 *
 *----------------------------------------------------------------------
 */
static INLINE unsigned int
PseudoColorPixel(pixelPtr, lut)
    Pix32 *pixelPtr;
    unsigned int *lut;
{
    int red, green, blue;
    int pixel;

    red = (pixelPtr->Red >> 3) + 1;
    green = (pixelPtr->Green >> 3) + 1;
    blue = (pixelPtr->Blue >> 3) + 1;
    pixel = RGBIndex(red, green, blue);
    return lut[pixel];
}

/*
 *----------------------------------------------------------------------
 *
 * Blt_ColorImageToPixmap --
 *
 *      Converts a color image into a pixmap.
 *
 *	Right now this only handles TrueColor visuals.
 *
 * Results:
 *      The new pixmap is returned.
 *
 *----------------------------------------------------------------------
 */
Pixmap
Blt_ColorImageToPixmap(interp, tkwin, image, colorTablePtr)
    Tcl_Interp *interp;
    Tk_Window tkwin;
    Blt_ColorImage image;
    ColorTable *colorTablePtr;	/* Points to array of colormap indices */
{
    Display *display;
    int width, height;
    Pixmap pixmap;
    GC pixmapGC;
    Visual *visualPtr;
    XImage *imagePtr;
    int nPixels;

    visualPtr = Tk_Visual(tkwin);
    width = Blt_ColorImageWidth(image);
    height = Blt_ColorImageHeight(image);
    display = Tk_Display(tkwin);

    ComputeMasks(visualPtr);

    *colorTablePtr = NULL;
    imagePtr = XCreateImage(Tk_Display(tkwin), visualPtr, Tk_Depth(tkwin),
	ZPixmap, 0, (char *)NULL, width, height, 32, 0);
    assert(imagePtr);

    nPixels = width * height;
    imagePtr->data = Blt_Malloc(sizeof(Pix32) * nPixels);
    assert(imagePtr->data);

    imagePtr->byte_order = MSBFirst;	/* Force the byte order */
    imagePtr->bitmap_bit_order = imagePtr->byte_order;
    imagePtr->bytes_per_line = width * sizeof(Pix32);

    switch (visualPtr->class) {
    case TrueColor:
	{
	    register int x, y;
	    register Pix32 *srcPtr;
	    register char *destPtr;
	    unsigned int pixel;
	    int rowOffset;

	    /*
	     * Compute the colormap locations directly from pixel RGB values.
	     */
	    srcPtr = Blt_ColorImageBits(image);
	    rowOffset = 0;
	    for (y = 0; y < height; y++) {
		destPtr = imagePtr->data + rowOffset;
		for (x = 0; x < width; x++, srcPtr++) {
		    pixel = TrueColorPixel(visualPtr, srcPtr);
		    switch (imagePtr->bits_per_pixel) {
		    case 32:
			*destPtr++ = (pixel >> 24) & 0xFF;
			/*FALLTHRU*/
		    case 24:
			*destPtr++ = (pixel >> 16) & 0xFF;
			/*FALLTHRU*/
		    case 16:
			*destPtr++ = (pixel >> 8) & 0xFF;
			/*FALLTHRU*/
		    case 8:
			*destPtr++ = pixel & 0xFF;
			/*FALLTHRU*/
		    }
		}
		rowOffset += imagePtr->bytes_per_line;
	    }
	}
	break;

    case DirectColor:
	{
	    register int x, y;
	    register Pix32 *srcPtr;
	    register char *destPtr;
	    unsigned int pixel;
	    int rowOffset;
	    struct ColorTableStruct *colorTabPtr;

	    /* Build a color table first */
	    colorTabPtr = Blt_DirectColorTable(interp, tkwin, image);

	    /*
	     * Compute the colormap locations directly from pixel RGB values.
	     */
	    srcPtr = Blt_ColorImageBits(image);
	    rowOffset = 0;
	    for (y = 0; y < height; y++) {
		destPtr = imagePtr->data + rowOffset;
		for (x = 0; x < width; x++, srcPtr++) {
		    pixel = DirectColorPixel(colorTabPtr, srcPtr);
		    switch (imagePtr->bits_per_pixel) {
		    case 32:
			*destPtr++ = (pixel >> 24) & 0xFF;
			/*FALLTHRU*/
		    case 24:
			*destPtr++ = (pixel >> 16) & 0xFF;
			/*FALLTHRU*/
		    case 16:
			*destPtr++ = (pixel >> 8) & 0xFF;
			/*FALLTHRU*/
		    case 8:
			*destPtr++ = pixel & 0xFF;
			/*FALLTHRU*/
		    }
		}
		rowOffset += imagePtr->bytes_per_line;
	    }
	    *colorTablePtr = colorTabPtr;
	}
	break;

    case GrayScale:
    case StaticGray:
    case PseudoColor:
    case StaticColor:
	{
	    register int x, y;
	    register Pix32 *srcPtr;
	    register char *destPtr;
	    unsigned int pixel;
	    int rowOffset;
	    struct ColorTableStruct *colorTabPtr;

	    colorTabPtr = Blt_PseudoColorTable(interp, tkwin, image);

	    srcPtr = Blt_ColorImageBits(image);
	    rowOffset = 0;
	    for (y = 0; y < height; y++) {
		destPtr = imagePtr->data + rowOffset;
		for (x = 0; x < width; x++, srcPtr++) {
		    pixel = PseudoColorPixel(srcPtr, colorTabPtr->lut);
		    switch (imagePtr->bits_per_pixel) {
		    case 32:
			*destPtr++ = (pixel >> 24) & 0xFF;
			/*FALLTHRU*/
		    case 24:
			*destPtr++ = (pixel >> 16) & 0xFF;
			/*FALLTHRU*/
		    case 16:
			*destPtr++ = (pixel >> 8) & 0xFF;
			/*FALLTHRU*/
		    case 8:
			*destPtr++ = pixel & 0xFF;
			/*FALLTHRU*/
		    }
		}
		rowOffset += imagePtr->bytes_per_line;
	    }
	    Blt_Free(colorTabPtr->lut);
	    *colorTablePtr = colorTabPtr;
	}
	break;
    default:
	return None;		/* Bad or unknown visual class. */
    }
    pixmapGC = Tk_GetGC(tkwin, 0L, (XGCValues *)NULL);
    pixmap = Tk_GetPixmap(display, Tk_WindowId(tkwin), width, height,
	Tk_Depth(tkwin));
    XPutImage(display, pixmap, pixmapGC, imagePtr, 0, 0, 0, 0, width, height);
    XDestroyImage(imagePtr);
    Tk_FreeGC(display, pixmapGC);
    return pixmap;
}

/* ARGSUSED */
static int
XGetImageErrorProc(clientData, errEventPtr)
    ClientData clientData;
    XErrorEvent *errEventPtr;
{
    int *errorPtr = clientData;

    *errorPtr = TCL_ERROR;
    return 0;
}

/*
 *----------------------------------------------------------------------
 *
 * Blt_DrawableToColorImage --
 *
 *      Takes a snapshot of an X drawable (pixmap or window) and
 *	converts it to a color image.
 *
 *	The trick here is to efficiently convert the pixel values
 *	(indices into the color table) into RGB color values.  In the
 *	days of 8-bit displays, it was simpler to get RGB values for
 *	all 256 indices into the colormap.  Instead we'll build a
 *	hashtable of unique pixels and from that an array of pixels to
 *	pass to XQueryColors.  For TrueColor visuals, we'll simple
 *	compute the colors from the pixel.
 *
 *	[I don't know how much faster it would be to take advantage
 *	of all the different visual types.  This pretty much depends
 *	on the size of the image and the number of colors it uses.]
 *
 * Results:
 *      Returns a color image of the drawable.  If an error occurred,
 *	NULL is returned.
 *
 *----------------------------------------------------------------------
 */
Blt_ColorImage
Blt_DrawableToColorImage(tkwin, drawable, x, y, width, height, inputGamma)
    Tk_Window tkwin;
    Drawable drawable;
    register int x, y;		/* Offset of image from the drawable's
				 * origin. */
    int width, height;		/* Dimension of the image.  Image must
				 * be completely contained by the
				 * drawable. */
    double inputGamma;
{
    XImage *imagePtr;
    Blt_ColorImage image;
    register Pix32 *destPtr;
    unsigned long pixel;
    int result = TCL_OK;
    Tk_ErrorHandler errHandler;
    Visual *visualPtr;
    unsigned char lut[256];

    errHandler = Tk_CreateErrorHandler(Tk_Display(tkwin), BadMatch,
	X_GetImage, -1, XGetImageErrorProc, &result);
    imagePtr = XGetImage(Tk_Display(tkwin), drawable, x, y, width, height, 
	AllPlanes, ZPixmap);
    Tk_DeleteErrorHandler(errHandler);
    XSync(Tk_Display(tkwin), False);
    if (result != TCL_OK) {
	return NULL;
    }

    {
	register int i;
	double value;
	
	for (i = 0; i < 256; i++) {
	    value = pow(i / 255.0, inputGamma) * 255.0 + 0.5;
	    lut[i] = (unsigned char)CLAMP(value);
	}
    }
    /*
     * First allocate a color image to hold the screen snapshot.
     */
    image = Blt_CreateColorImage(width, height);
    visualPtr = Tk_Visual(tkwin);
    if (visualPtr->class == TrueColor) {
	unsigned int red, green, blue;
	/*
	 * Directly compute the RGB color values from the pixel index
	 * rather than of going through XQueryColors.
	 */
	ComputeMasks(visualPtr);
	destPtr = Blt_ColorImageBits(image);
	for (y = 0; y < height; y++) {
	    for (x = 0; x < width; x++) {
		pixel = XGetPixel(imagePtr, x, y);

		red = ((pixel & visualPtr->red_mask) >> redMaskShift) << redAdjust;
		green = ((pixel & visualPtr->green_mask) >> greenMaskShift) << greenAdjust;
		blue = ((pixel & visualPtr->blue_mask) >> blueMaskShift) << blueAdjust;

		/*
		 * The number of bits per color in the pixel may be
		 * less than eight. For example, 15/16 bit displays
		 * (hi-color) use only 5 bits, 8-bit displays use 2 or
		 * 3 bits (don't ask me why you'd have an 8-bit
		 * TrueColor display). So shift back the least
		 * significant bits.
		 */
		destPtr->Red = lut[red];
		destPtr->Green = lut[green];
		destPtr->Blue = lut[blue];
		destPtr->Alpha = (unsigned char)-1;
		destPtr++;
	    }
	}
	XDestroyImage(imagePtr);
    } else {
	Blt_HashEntry *hPtr;
	Blt_HashSearch cursor;
	Blt_HashTable pixelTable;
	XColor *colorPtr, *colorArr;
	Pix32 *endPtr;
	int nPixels;
	int nColors;
	int isNew;

	/*
	 * Fill the array with each pixel of the image. At the same time, build
	 * up a hashtable of the pixels used.
	 */
	nPixels = width * height;
	Blt_InitHashTableWithPool(&pixelTable, BLT_ONE_WORD_KEYS);
	destPtr = Blt_ColorImageBits(image);
	for (y = 0; y < height; y++) {
	    for (x = 0; x < width; x++) {
		pixel = XGetPixel(imagePtr, x, y);
		hPtr = Blt_CreateHashEntry(&pixelTable, (char *)pixel, &isNew);
		if (isNew) {
		    Blt_SetHashValue(hPtr, (char *)pixel);
		}
		destPtr->value = pixel;
		destPtr++;
	    }
	}
	XDestroyImage(imagePtr);

	/* 
	 * Convert the hashtable of pixels into an array of XColors so
	 * that we can call XQueryColors with it. XQueryColors will
	 * convert the pixels into their RGB values.  
	 */
	nColors = pixelTable.numEntries;
	colorArr = Blt_Malloc(sizeof(XColor) * nColors);
	assert(colorArr);

	colorPtr = colorArr;
	for (hPtr = Blt_FirstHashEntry(&pixelTable, &cursor); hPtr != NULL;
	    hPtr = Blt_NextHashEntry(&cursor)) {
	    colorPtr->pixel = (unsigned long)Blt_GetHashValue(hPtr);
	    Blt_SetHashValue(hPtr, (char *)colorPtr);
	    colorPtr++;
	}
	XQueryColors(Tk_Display(tkwin), Tk_Colormap(tkwin), colorArr, nColors);

	/* 
	 * Go again through the array of pixels, replacing each pixel
	 * of the image with its RGB value.  
	 */
	destPtr = Blt_ColorImageBits(image);
	endPtr = destPtr + nPixels;
	for (/* empty */; destPtr < endPtr; destPtr++) {
	    hPtr = Blt_FindHashEntry(&pixelTable, (char *)(intptr_t)destPtr->value);
	    colorPtr = (XColor *)Blt_GetHashValue(hPtr);
	    destPtr->Red = lut[colorPtr->red >> 8];
	    destPtr->Green = lut[colorPtr->green >> 8];
	    destPtr->Blue = lut[colorPtr->blue >> 8];
	    destPtr->Alpha = (unsigned char)-1;
	}
	Blt_Free(colorArr);
	Blt_DeleteHashTable(&pixelTable);
    }
    return image;
}


Pixmap
Blt_PhotoImageMask(tkwin, src)
    Tk_Window tkwin;
    Tk_PhotoImageBlock src;
{
    Pixmap bitmap;
    int arraySize, bytes_per_line;
    int offset, count;
    int value, bitMask;
    register int x, y;
    unsigned char *bits;
    unsigned char *srcPtr;
    unsigned char *destPtr;
    unsigned long pixel;

    bytes_per_line = (src.width + 7) / 8;
    arraySize = src.height * bytes_per_line;
    bits = Blt_Malloc(sizeof(unsigned char) * arraySize);
    assert(bits);
    destPtr = bits;
    offset = count = 0;
    for (y = 0; y < src.height; y++) {
	value = 0, bitMask = 1;
	srcPtr = src.pixelPtr + offset;
	for (x = 0; x < src.width; /*empty*/ ) {
	    pixel = (srcPtr[src.offset[3]] != 0x00);
	    if (pixel) {
		value |= bitMask;
	    } else {
		count++;	/* Count the number of transparent pixels. */
	    }
	    bitMask <<= 1;
	    x++;
	    if (!(x & 7)) {
		*destPtr++ = (unsigned char)value;
		value = 0, bitMask = 1;
	    }
	    srcPtr += src.pixelSize;
	}
	if (x & 7) {
	    *destPtr++ = (unsigned char)value;
	}
	offset += src.pitch;
    }
    if (count > 0) {
	Tk_MakeWindowExist(tkwin);
	bitmap = XCreateBitmapFromData(Tk_Display(tkwin), Tk_WindowId(tkwin),
	    (char *)bits, (unsigned int)src.width, (unsigned int)src.height);
    } else {
	bitmap = None;		/* Image is opaque. */
    }
    Blt_Free(bits);
    return bitmap;
}

Pixmap
Blt_ColorImageMask(tkwin, image)
    Tk_Window tkwin;
    Blt_ColorImage image;
{
    Pixmap bitmap;
    int arraySize, bytes_per_line;
    int count;
    int value, bitMask;
    register int x, y;
    unsigned char *bits;
    Pix32 *srcPtr;
    unsigned char *destPtr;
    unsigned long pixel;
    int width, height;

    width = Blt_ColorImageWidth(image);
    height = Blt_ColorImageHeight(image);
    bytes_per_line = (width + 7) / 8;
    arraySize = height * bytes_per_line;
    bits = Blt_Malloc(sizeof(unsigned char) * arraySize);
    assert(bits);
    destPtr = bits;
    count = 0;
    srcPtr = Blt_ColorImageBits(image);
    for (y = 0; y < height; y++) {
	value = 0, bitMask = 1;
	for (x = 0; x < width; /*empty*/ ) {
	    pixel = (srcPtr->Alpha != 0x00);
	    if (pixel) {
		value |= bitMask;
	    } else {
		count++;	/* Count the number of transparent pixels. */
	    }
	    bitMask <<= 1;
	    x++;
	    if (!(x & 7)) {
		*destPtr++ = (unsigned char)value;
		value = 0, bitMask = 1;
	    }
	    srcPtr++;
	}
	if (x & 7) {
	    *destPtr++ = (unsigned char)value;
	}
    }
    if (count > 0) {
	Tk_MakeWindowExist(tkwin);
	bitmap = XCreateBitmapFromData(Tk_Display(tkwin), Tk_WindowId(tkwin),
	    (char *)bits, (unsigned int)width, (unsigned int)height);
    } else {
	bitmap = None;		/* Image is opaque. */
    }
    Blt_Free(bits);
    return bitmap;
}

/*
 * -----------------------------------------------------------------
 *
 * Blt_RotateBitmap --
 *
 *	Creates a new bitmap containing the rotated image of the given
 *	bitmap.  We also need a special GC of depth 1, so that we do
 *	not need to rotate more than one plane of the bitmap.
 *
 * Results:
 *	Returns a new bitmap containing the rotated image.
 *
 * -----------------------------------------------------------------
 */
Pixmap
Blt_RotateBitmap(tkwin, srcBitmap, srcWidth, srcHeight, theta,
    destWidthPtr, destHeightPtr)
    Tk_Window tkwin;
    Pixmap srcBitmap;		/* Source bitmap to be rotated */
    int srcWidth, srcHeight;	/* Width and height of the source bitmap */
    double theta;		/* Right angle rotation to perform */
    int *destWidthPtr, *destHeightPtr;
{
    Display *display;		/* X display */
    Window root;		/* Root window drawable */
    Pixmap destBitmap;
    int destWidth, destHeight;
    XImage *src, *dest;
    register int x, y;		/* Destination bitmap coordinates */
    register int sx, sy;	/* Source bitmap coordinates */
    unsigned long pixel;
    GC bitmapGC;
    double rotWidth, rotHeight;

    display = Tk_Display(tkwin);
    root = RootWindow(Tk_Display(tkwin), Tk_ScreenNumber(tkwin));

    /* Create a bitmap and image big enough to contain the rotated text */
    Blt_GetBoundingBox(srcWidth, srcHeight, theta, &rotWidth, &rotHeight,
	(Point2D *)NULL);
    destWidth = ROUND(rotWidth);
    destHeight = ROUND(rotHeight);
    destBitmap = Tk_GetPixmap(display, root, destWidth, destHeight, 1);
    bitmapGC = Blt_GetBitmapGC(tkwin);
    XSetForeground(display, bitmapGC, 0x0);
    XFillRectangle(display, destBitmap, bitmapGC, 0, 0, destWidth, destHeight);

    src = XGetImage(display, srcBitmap, 0, 0, srcWidth, srcHeight, 1, ZPixmap);
    dest = XGetImage(display, destBitmap, 0, 0, destWidth, destHeight, 1,
	ZPixmap);
    theta = FMOD(theta, 360.0);
    if (FMOD(theta, (double)90.0) == 0.0) {
	int quadrant;

	/* Handle right-angle rotations specifically */

	quadrant = (int)(theta / 90.0);
	switch (quadrant) {
	case ROTATE_270:	/* 270 degrees */
	    for (y = 0; y < destHeight; y++) {
		sx = y;
		for (x = 0; x < destWidth; x++) {
		    sy = destWidth - x - 1;
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_180:	/* 180 degrees */
	    for (y = 0; y < destHeight; y++) {
		sy = destHeight - y - 1;
		for (x = 0; x < destWidth; x++) {
		    sx = destWidth - x - 1, 
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_90:		/* 90 degrees */
	    for (y = 0; y < destHeight; y++) {
		sx = destHeight - y - 1;
		for (x = 0; x < destWidth; x++) {
		    sy = x;
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_0:		/* 0 degrees */
	    for (y = 0; y < destHeight; y++) {
		for (x = 0; x < destWidth; x++) {
		    pixel = XGetPixel(src, x, y);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	default:
	    /* The calling routine should never let this happen. */
	    break;
	}
    } else {
	double radians, sinTheta, cosTheta;
	double sox, soy;	/* Offset from the center of
				 * the source rectangle. */
	double destCX, destCY;	/* Offset to the center of the destination
				 * rectangle. */
	double tx, ty;		/* Translated coordinates from center */
	double rx, ry;		/* Angle of rotation for x and y coordinates */

	radians = (theta / 180.0) * M_PI;
	sinTheta = sin(radians), cosTheta = cos(radians);

	/*
	 * Coordinates of the centers of the source and destination rectangles
	 */
	sox = srcWidth * 0.5;
	soy = srcHeight * 0.5;
	destCX = destWidth * 0.5;
	destCY = destHeight * 0.5;

	/* For each pixel of the destination image, transform back to the
	 * associated pixel in the source image. */

	for (y = 0; y < destHeight; y++) {
	    ty = y - destCY;
	    for (x = 0; x < destWidth; x++) {

		/* Translate origin to center of destination image. */
		tx = x - destCX;

		/* Rotate the coordinates about the origin. */
		rx = (tx * cosTheta) - (ty * sinTheta);
		ry = (tx * sinTheta) + (ty * cosTheta);

		/* Translate back to the center of the source image. */
		rx += sox;
		ry += soy;

		sx = ROUND(rx);
		sy = ROUND(ry);

		/*
		 * Verify the coordinates, since the destination image can be
		 * bigger than the source.
		 */

		if ((sx >= srcWidth) || (sx < 0) || (sy >= srcHeight) ||
		    (sy < 0)) {
		    continue;
		}
		pixel = XGetPixel(src, sx, sy);
		if (pixel) {
		    XPutPixel(dest, x, y, pixel);
		}
	    }
	}
    }
    /* Write the rotated image into the destination bitmap. */
    XPutImage(display, destBitmap, bitmapGC, dest, 0, 0, 0, 0, destWidth,
	destHeight);

    /* Clean up the temporary resources used. */
    XDestroyImage(src), XDestroyImage(dest);
    *destWidthPtr = destWidth;
    *destHeightPtr = destHeight;
    return destBitmap;
}

/*
 * -----------------------------------------------------------------------
 *
 * Blt_ScaleBitmap --
 *
 *	Creates a new scaled bitmap from another bitmap. The new bitmap
 *	is bounded by a specified region. Only this portion of the bitmap
 *	is scaled from the original bitmap.
 *
 *	By bounding scaling to a region we can generate a new bitmap
 *	which is no bigger than the specified viewport.
 *
 * Results:
 *	The new scaled bitmap is returned.
 *
 * Side Effects:
 *	A new pixmap is allocated. The caller must release this.
 *
 * -----------------------------------------------------------------------
 */
Pixmap
Blt_ScaleBitmap(tkwin, srcBitmap, srcWidth, srcHeight, destWidth, destHeight)
    Tk_Window tkwin;
    Pixmap srcBitmap;
    int srcWidth, srcHeight, destWidth, destHeight;
{
    Display *display;
    GC bitmapGC;
    Pixmap destBitmap;
    Window root;
    XImage *src, *dest;
    double xScale, yScale;
    register int sx, sy;	/* Source bitmap coordinates */
    register int x, y;		/* Destination bitmap coordinates */
    unsigned long pixel;

    /* Create a new bitmap the size of the region and clear it */

    display = Tk_Display(tkwin);

    root = RootWindow(Tk_Display(tkwin), Tk_ScreenNumber(tkwin));
    destBitmap = Tk_GetPixmap(display, root, destWidth, destHeight, 1);
    bitmapGC = Blt_GetBitmapGC(tkwin);
    XSetForeground(display, bitmapGC, 0x0);
    XFillRectangle(display, destBitmap, bitmapGC, 0, 0, destWidth, destHeight);

    src = XGetImage(display, srcBitmap, 0, 0, srcWidth, srcHeight, 1, ZPixmap);
    dest = XGetImage(display, destBitmap, 0, 0, destWidth, destHeight, 1, 
		     ZPixmap);

    /*
     * Scale each pixel of destination image from results of source
     * image. Verify the coordinates, since the destination image can
     * be bigger than the source
     */
    xScale = (double)srcWidth / (double)destWidth;
    yScale = (double)srcHeight / (double)destHeight;

    /* Map each pixel in the destination image back to the source. */
    for (y = 0; y < destHeight; y++) {
	sy = (int)(yScale * (double)y);
	for (x = 0; x < destWidth; x++) {
	    sx = (int)(xScale * (double)x);
	    pixel = XGetPixel(src, sx, sy);
	    if (pixel) {
		XPutPixel(dest, x, y, pixel);
	    }
	}
    }
    /* Write the scaled image into the destination bitmap */

    XPutImage(display, destBitmap, bitmapGC, dest, 0, 0, 0, 0, 
	destWidth, destHeight);
    XDestroyImage(src), XDestroyImage(dest);
    return destBitmap;
}


/*
 * -----------------------------------------------------------------------
 *
 * Blt_RotateScaleBitmapRegion --
 *
 *	Creates a scaled and rotated bitmap from a given bitmap.  The
 *	caller also provides (offsets and dimensions) the region of
 *	interest in the destination bitmap.  This saves having to
 *	process the entire destination bitmap is only part of it is
 *	showing in the viewport.
 *
 *	This uses a simple rotation/scaling of each pixel in the 
 *	destination image.  For each pixel, the corresponding 
 *	pixel in the source bitmap is used.  This means that 
 *	destination coordinates are first scaled to the size of 
 *	the rotated source bitmap.  These coordinates are then
 *	rotated back to their original orientation in the source.
 *
 * Results:
 *	The new rotated and scaled bitmap is returned.
 *
 * Side Effects:
 *	A new pixmap is allocated. The caller must release this.
 *
 * -----------------------------------------------------------------------
 */
Pixmap
Blt_ScaleRotateBitmapRegion(
    Tk_Window tkwin,
    Pixmap srcBitmap,		/* Source bitmap. */
    unsigned int srcWidth, 
    unsigned int srcHeight,	/* Size of source bitmap */
    int regionX, 
    int regionY,		/* Offset of region in virtual
				 * destination bitmap. */
    unsigned int regionWidth, 
    unsigned int regionHeight,	/* Desire size of bitmap region. */
    unsigned int destWidth,		
    unsigned int destHeight,	/* Virtual size of destination bitmap. */
    double theta)		/* Angle to rotate bitmap.  */
{
    Display *display;		/* X display */
    Window root;		/* Root window drawable */
    Pixmap destBitmap;
    XImage *src, *dest;
    register int x, y;		/* Destination bitmap coordinates */
    register int sx, sy;	/* Source bitmap coordinates */
    unsigned long pixel;
    double xScale, yScale;
    double rotWidth, rotHeight;
    GC bitmapGC;

    display = Tk_Display(tkwin);
    root = RootWindow(Tk_Display(tkwin), Tk_ScreenNumber(tkwin));

    /* Create a bitmap and image big enough to contain the rotated text */
    bitmapGC = Blt_GetBitmapGC(tkwin);
    destBitmap = Tk_GetPixmap(display, root, regionWidth, regionHeight, 1);
    XSetForeground(display, bitmapGC, 0x0);
    XFillRectangle(display, destBitmap, bitmapGC, 0, 0, regionWidth, 
	regionHeight);

    src = XGetImage(display, srcBitmap, 0, 0, srcWidth, srcHeight, 1, ZPixmap);
    dest = XGetImage(display, destBitmap, 0, 0, regionWidth, regionHeight, 1,
	ZPixmap);
    theta = FMOD(theta, 360.0);

    Blt_GetBoundingBox(srcWidth, srcHeight, theta, &rotWidth, &rotHeight,
		       (Point2D *)NULL);
    xScale = rotWidth / (double)destWidth;
    yScale = rotHeight / (double)destHeight;

    if (FMOD(theta, (double)90.0) == 0.0) {
	int quadrant;

	/* Handle right-angle rotations specifically */

	quadrant = (int)(theta / 90.0);
	switch (quadrant) {
	case ROTATE_270:	/* 270 degrees */
	    for (y = 0; y < regionHeight; y++) {
		sx = (int)(yScale * (double)(y + regionY));
		for (x = 0; x < regionWidth; x++) {
		    sy = (int)(xScale *(double)(destWidth - (x + regionX) - 1));
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_180:	/* 180 degrees */
	    for (y = 0; y < regionHeight; y++) {
		sy = (int)(yScale * (double)(destHeight - (y + regionY) - 1));
		for (x = 0; x < regionWidth; x++) {
		    sx = (int)(xScale *(double)(destWidth - (x + regionX) - 1));
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_90:		/* 90 degrees */
	    for (y = 0; y < regionHeight; y++) {
		sx = (int)(yScale * (double)(destHeight - (y + regionY) - 1));
		for (x = 0; x < regionWidth; x++) {
		    sy = (int)(xScale * (double)(x + regionX));
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	case ROTATE_0:		/* 0 degrees */
	    for (y = 0; y < regionHeight; y++) {
		sy = (int)(yScale * (double)(y + regionY));
		for (x = 0; x < regionWidth; x++) {
		    sx = (int)(xScale * (double)(x + regionX));
		    pixel = XGetPixel(src, sx, sy);
		    if (pixel) {
			XPutPixel(dest, x, y, pixel);
		    }
		}
	    }
	    break;

	default:
	    /* The calling routine should never let this happen. */
	    break;
	}
    } else {
	double radians, sinTheta, cosTheta;
	double sox, soy; 	/* Offset from the center of the
				 * source rectangle. */
	double rox, roy; 	/* Offset to the center of the
				 * rotated rectangle. */
	double tx, ty;		/* Translated coordinates from center */
	double rx, ry;		/* Angle of rotation for x and y coordinates */

	radians = (theta / 180.0) * M_PI;
	sinTheta = sin(radians), cosTheta = cos(radians);

	/*
	 * Coordinates of the centers of the source and destination rectangles
	 */
	sox = srcWidth * 0.5;
	soy = srcHeight * 0.5;
	rox = rotWidth * 0.5;
	roy = rotHeight * 0.5;

	/* For each pixel of the destination image, transform back to the
	 * associated pixel in the source image. */

	for (y = 0; y < regionHeight; y++) {
	    ty = (yScale * (double)(y + regionY)) - roy;
	    for (x = 0; x < regionWidth; x++) {

		/* Translate origin to center of destination image. */
		tx = (xScale * (double)(x + regionX)) - rox;

		/* Rotate the coordinates about the origin. */
		rx = (tx * cosTheta) - (ty * sinTheta);
		ry = (tx * sinTheta) + (ty * cosTheta);

		/* Translate back to the center of the source image. */
		rx += sox;
		ry += soy;

		sx = ROUND(rx);
		sy = ROUND(ry);

		/*
		 * Verify the coordinates, since the destination image can be
		 * bigger than the source.
		 */

		if ((sx >= srcWidth) || (sx < 0) || (sy >= srcHeight) ||
		    (sy < 0)) {
		    continue;
		}
		pixel = XGetPixel(src, sx, sy);
		if (pixel) {
		    XPutPixel(dest, x, y, pixel);
		}
	    }
	}
    }
    /* Write the rotated image into the destination bitmap. */
    XPutImage(display, destBitmap, bitmapGC, dest, 0, 0, 0, 0, regionWidth,
      regionHeight);

    /* Clean up the temporary resources used. */
    XDestroyImage(src), XDestroyImage(dest);
    return destBitmap;

}

#if HAVE_JPEGLIB_H

#undef HAVE_STDLIB_H
#undef EXTERN
#ifdef WIN32
#define XMD_H	1
#endif
#include "jpeglib.h"
#include <setjmp.h>

typedef struct {
    struct jpeg_error_mgr pub;	/* "public" fields */
    jmp_buf jmpBuf;
    Tcl_DString dString;
} ReaderHandler;

static void ErrorProc _ANSI_ARGS_((j_common_ptr jpegInfo));
static void MessageProc _ANSI_ARGS_((j_common_ptr jpegInfo));

/*
 * Here's the routine that will replace the standard error_exit method:
 */

static void
ErrorProc(jpgPtr)
    j_common_ptr jpgPtr;
{
    ReaderHandler *handlerPtr = (ReaderHandler *)jpgPtr->err;

    (*handlerPtr->pub.output_message) (jpgPtr);
    longjmp(handlerPtr->jmpBuf, 1);
}

static void
MessageProc(jpgPtr)
    j_common_ptr jpgPtr;
{
    ReaderHandler *handlerPtr = (ReaderHandler *)jpgPtr->err;
    char buffer[JMSG_LENGTH_MAX];

    /* Create the message and append it into the dynamic string. */
    (*handlerPtr->pub.format_message) (jpgPtr, buffer);
    Tcl_DStringAppend(&(handlerPtr->dString), " ", -1);
    Tcl_DStringAppend(&(handlerPtr->dString), buffer, -1);
}

/*
 *----------------------------------------------------------------------
 *
 * Blt_JPEGToColorImage --
 *
 *      Reads a JPEG file and converts it into a color image.
 *
 * Results:
 *      The color image is returned.  If an error occured, such
 *	as the designated file could not be opened, NULL is returned.
 *
 *----------------------------------------------------------------------
 */
Blt_ColorImage
Blt_JPEGToColorImage(interp, fileName)
    Tcl_Interp *interp;
    char *fileName;
{
    struct jpeg_decompress_struct jpg;
    Blt_ColorImage image;
    unsigned int imageWidth, imageHeight;
    register Pix32 *destPtr;
    ReaderHandler handler;
    FILE *f;
    JSAMPLE **readBuffer;
    int row_stride;
    register int i;
    register JSAMPLE *bufPtr;

    f = fopen(fileName, "rb");
    if (f == NULL) {
	Tcl_AppendResult(interp, "can't open \"", fileName, "\":",
	    Tcl_PosixError(interp), (char *)NULL);
	return NULL;
    }
    image = NULL;

    /* Step 1: allocate and initialize JPEG decompression object */

    /* We set up the normal JPEG error routines, then override error_exit. */
    jpg.dct_method = JDCT_IFAST;
    jpg.err = jpeg_std_error(&handler.pub);
    handler.pub.error_exit = ErrorProc;
    handler.pub.output_message = MessageProc;

    Tcl_DStringInit(&handler.dString);
    Tcl_DStringAppend(&handler.dString, "error reading \"", -1);
    Tcl_DStringAppend(&handler.dString, fileName, -1);
    Tcl_DStringAppend(&handler.dString, "\": ", -1);

    if (setjmp(handler.jmpBuf)) {
	jpeg_destroy_decompress(&jpg);
	fclose(f);
	Tcl_DStringResult(interp, &(handler.dString));
	return NULL;
    }
    jpeg_create_decompress(&jpg);
    jpeg_stdio_src(&jpg, f);

    jpeg_read_header(&jpg, TRUE);	/* Step 3: read file parameters */

    jpeg_start_decompress(&jpg);	/* Step 5: Start decompressor */
    imageWidth = jpg.output_width;
    imageHeight = jpg.output_height;
    if ((imageWidth < 1) || (imageHeight < 1)) {
	Tcl_AppendResult(interp, "bad JPEG image size", (char *)NULL);
	fclose(f);
	return NULL;
    }
    /* JSAMPLEs per row in output buffer */
    row_stride = imageWidth * jpg.output_components;

    /* Make a one-row-high sample array that will go away when done
     * with image */
    readBuffer = (*jpg.mem->alloc_sarray) ((j_common_ptr)&jpg, JPOOL_IMAGE, 
	row_stride, 1);
    image = Blt_CreateColorImage(imageWidth, imageHeight);
    destPtr = Blt_ColorImageBits(image);

    if (jpg.output_components == 1) {
	while (jpg.output_scanline < imageHeight) {
	    jpeg_read_scanlines(&jpg, readBuffer, 1);
	    bufPtr = readBuffer[0];
	    for (i = 0; i < (int)imageWidth; i++) {
		destPtr->Red = destPtr->Green = destPtr->Blue = *bufPtr++;
		destPtr->Alpha = (unsigned char)-1;
		destPtr++;
	    }
	}
    } else {
	while (jpg.output_scanline < imageHeight) {
	    jpeg_read_scanlines(&jpg, readBuffer, 1);
	    bufPtr = readBuffer[0];
	    for (i = 0; i < (int)imageWidth; i++) {
		destPtr->Red = *bufPtr++;
		destPtr->Green = *bufPtr++;
		destPtr->Blue = *bufPtr++;
		destPtr->Alpha = (unsigned char)-1;
		destPtr++;
	    }
	}
    }
    jpeg_finish_decompress(&jpg);	/* We can ignore the return value
					 * since suspension is not
					 * possible with the stdio data
					 * source.  */
    jpeg_destroy_decompress(&jpg);


    /*  
     * After finish_decompress, we can close the input file.  Here we
     * postpone it until after no more JPEG errors are possible, so as
     * to simplify the setjmp error logic above.  (Actually, I don't
     * think that jpeg_destroy can do an error exit, but why assume
     * anything...)  
     */
    fclose(f);

    /* 
     * At this point you may want to check to see whether any corrupt-data
     * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
     */
    if (handler.pub.num_warnings > 0) {
	Tcl_SetErrorCode(interp, "IMAGE", "JPEG", 
		 Tcl_DStringValue(&(handler.dString)), (char *)NULL);
    } else {
	Tcl_SetErrorCode(interp, "NONE", (char *)NULL);
    }
    /*
     * We're ready to call the Tk_Photo routines. They'll take the RGB
     * array we've processed to build the Tk image of the JPEG.
     */
    Tcl_DStringFree(&(handler.dString));
    return image;
}

#endif /* HAVE_JPEGLIB_H */