File: blurhash.py

package info (click to toggle)
blurhash-python 1.1.4%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 112 kB
  • sloc: python: 168; makefile: 2
file content (230 lines) | stat: -rw-r--r-- 8,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
Pure python blurhash decoder with no additional dependencies, for 
both de- and encoding.

Very close port of the original Swift implementation by Dag Ă…gren.
"""

import math

# Alphabet for base 83
alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz#$%*+,-.:;=?@[]^_{|}~"
alphabet_values = dict(zip(alphabet, range(len(alphabet))))

def base83_decode(base83_str):
    """
    Decodes a base83 string, as used in blurhash, to an integer.
    """
    value = 0
    for base83_char in base83_str:
        value = value * 83 + alphabet_values[base83_char]
    return value

def base83_encode(value, length):
    """
    Decodes an integer to a base83 string, as used in blurhash.
    
    Length is how long the resulting string should be. Will complain
    if the specified length is too short.
    """
    if int(value) // (83 ** (length)) != 0:
        raise ValueError("Specified length is too short to encode given value.")
        
    result = ""
    for i in range(1, length + 1):
        digit = int(value) // (83 ** (length - i)) % 83
        result += alphabet[int(digit)]
    return result

def srgb_to_linear(value):
    """
    srgb 0-255 integer to linear 0.0-1.0 floating point conversion.
    """
    value = float(value) / 255.0
    if value <= 0.04045:
        return value / 12.92
    return math.pow((value + 0.055) / 1.055, 2.4)

def sign_pow(value, exp):
    """
    Sign-preserving exponentiation.
    """
    return math.copysign(math.pow(abs(value), exp), value)

def linear_to_srgb(value):
    """
    linear 0.0-1.0 floating point to srgb 0-255 integer conversion.
    """
    value = max(0.0, min(1.0, value))
    if value <= 0.0031308:
        return int(value * 12.92 * 255 + 0.5)
    return int((1.055 * math.pow(value, 1 / 2.4) - 0.055) * 255 + 0.5)

def blurhash_components(blurhash):
    """
    Decodes and returns the number of x and y components in the given blurhash.
    """
    if len(blurhash) < 6:
        raise ValueError("BlurHash must be at least 6 characters long.")
    
    # Decode metadata
    size_info = base83_decode(blurhash[0])
    size_y = int(size_info / 9) + 1
    size_x = (size_info % 9) + 1
    
    return size_x, size_y

def blurhash_decode(blurhash, width, height, punch = 1.0, linear = False):
    """
    Decodes the given blurhash to an image of the specified size.
    
    Returns the resulting image a list of lists of 3-value sRGB 8 bit integer
    lists. Set linear to True if you would prefer to get linear floating point 
    RGB back.
    
    The punch parameter can be used to de- or increase the contrast of the
    resulting image.
    
    As per the original implementation it is suggested to only decode
    to a relatively small size and then scale the result up, as it
    basically looks the same anyways.
    """
    if len(blurhash) < 6:
        raise ValueError("BlurHash must be at least 6 characters long.")
    
    # Decode metadata
    size_info = base83_decode(blurhash[0])
    size_y = int(size_info / 9) + 1
    size_x = (size_info % 9) + 1
    
    quant_max_value = base83_decode(blurhash[1])
    real_max_value = (float(quant_max_value + 1) / 166.0) * punch
    
    # Make sure we at least have the right number of characters
    if len(blurhash) != 4 + 2 * size_x * size_y:
        raise ValueError("Invalid BlurHash length.")
        
    # Decode DC component
    dc_value = base83_decode(blurhash[2:6])
    colours = [(
        srgb_to_linear(dc_value >> 16),
        srgb_to_linear((dc_value >> 8) & 255),
        srgb_to_linear(dc_value & 255)
    )]
    
    # Decode AC components
    for component in range(1, size_x * size_y):
        ac_value = base83_decode(blurhash[4+component*2:4+(component+1)*2])
        colours.append((
            sign_pow((float(int(ac_value / (19 * 19))) - 9.0) / 9.0, 2.0) * real_max_value,
            sign_pow((float(int(ac_value / 19) % 19) - 9.0) / 9.0, 2.0) * real_max_value,
            sign_pow((float(ac_value % 19) - 9.0) / 9.0, 2.0) * real_max_value
        ))
    
    # Return image RGB values, as a list of lists of lists, 
    # consumable by something like numpy or PIL.
    pixels = []
    for y in range(height):
        pixel_row = []
        for x in range(width):
            pixel = [0.0, 0.0, 0.0]

            for j in range(size_y):
                for i in range(size_x):
                    basis = math.cos(math.pi * float(x) * float(i) / float(width)) * \
                            math.cos(math.pi * float(y) * float(j) / float(height))
                    colour = colours[i + j * size_x]
                    pixel[0] += colour[0] * basis
                    pixel[1] += colour[1] * basis
                    pixel[2] += colour[2] * basis
            if linear == False:
                pixel_row.append([
                    linear_to_srgb(pixel[0]),
                    linear_to_srgb(pixel[1]),
                    linear_to_srgb(pixel[2]),
                ])
            else:
                pixel_row.append(pixel)
        pixels.append(pixel_row)
    return pixels
    
def blurhash_encode(image, components_x = 4, components_y = 4, linear = False):
    """
    Calculates the blurhash for an image using the given x and y component counts.
    
    Image should be a 3-dimensional array, with the first dimension being y, the second
    being x, and the third being the three rgb components that are assumed to be 0-255 
    srgb integers (incidentally, this is the format you will get from a PIL RGB image).
    
    You can also pass in already linear data - to do this, set linear to True. This is
    useful if you want to encode a version of your image resized to a smaller size (which
    you should ideally do in linear colour).
    """
    if components_x < 1 or components_x > 9 or components_y < 1 or components_y > 9: 
        raise ValueError("x and y component counts must be between 1 and 9 inclusive.")
    height = float(len(image))
    width = float(len(image[0]))
    
    # Convert to linear if neeeded
    image_linear = []
    if linear == False:
        for y in range(int(height)):
            image_linear_line = []
            for x in range(int(width)):
                image_linear_line.append([
                    srgb_to_linear(image[y][x][0]),
                    srgb_to_linear(image[y][x][1]),
                    srgb_to_linear(image[y][x][2])
                ])
            image_linear.append(image_linear_line)
    else:
        image_linear = image
        
    # Calculate components
    components = []
    max_ac_component = 0.0
    for j in range(components_y):
        for i in range(components_x):
            norm_factor = 1.0 if (i == 0 and j == 0) else 2.0
            component = [0.0, 0.0, 0.0]
            for y in range(int(height)):
                for x in range(int(width)):
                    basis = norm_factor * math.cos(math.pi * float(i) * float(x) / width) * \
                                          math.cos(math.pi * float(j) * float(y) / height)
                    component[0] += basis * image_linear[y][x][0]
                    component[1] += basis * image_linear[y][x][1]
                    component[2] += basis * image_linear[y][x][2]
                    
            component[0] /= (width * height)
            component[1] /= (width * height)
            component[2] /= (width * height)
            components.append(component)
            
            if not (i == 0 and j == 0):
                max_ac_component = max(max_ac_component, abs(component[0]), abs(component[1]), abs(component[2]))
                
    # Encode components
    dc_value = (linear_to_srgb(components[0][0]) << 16) + \
               (linear_to_srgb(components[0][1]) << 8) + \
               linear_to_srgb(components[0][2])
    
    quant_max_ac_component = int(max(0, min(82, math.floor(max_ac_component * 166 - 0.5))))
    ac_component_norm_factor = float(quant_max_ac_component + 1) / 166.0
    
    ac_values = []
    for r, g, b in components[1:]:
        ac_values.append(
            int(max(0.0, min(18.0, math.floor(sign_pow(r / ac_component_norm_factor, 0.5) * 9.0 + 9.5)))) * 19 * 19 + \
            int(max(0.0, min(18.0, math.floor(sign_pow(g / ac_component_norm_factor, 0.5) * 9.0 + 9.5)))) * 19 + \
            int(max(0.0, min(18.0, math.floor(sign_pow(b / ac_component_norm_factor, 0.5) * 9.0 + 9.5))))
        )
        
    # Build final blurhash
    blurhash = ""
    blurhash += base83_encode((components_x - 1) + (components_y - 1) * 9, 1)
    blurhash += base83_encode(quant_max_ac_component, 1)
    blurhash += base83_encode(dc_value, 4)
    for ac_value in ac_values:
        blurhash += base83_encode(ac_value, 2)
    
    return blurhash