1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
|
/*
Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For more information please visit: http://bitmagic.io
*/
/** \example xsample01.cpp
Demo and a benchmark on memory consumption control and logical operation
*/
/*! \file xsample01.cpp
\brief Example: Example: memory consumption techniques
*/
#include <iostream>
#include <memory>
#include <map>
#include <vector>
#include <chrono>
#include <algorithm>
#include <stdexcept>
#include "bm.h"
#include "bmalgo.h"
#include "bmtimer.h"
#include "bmserial.h"
#include "bmsparsevec.h"
#include "bmsparsevec_algo.h"
#include "bmsparsevec_serial.h"
#include "bmalgo_similarity.h"
#include "bmdbg.h"
// ----------------------------------------------------
// Global parameters and types
// ----------------------------------------------------
// Number of vectors generated for the test
const unsigned index_size = 1000000;
// Dynamic range for constructed sets
const unsigned max_size = 2000000;
// Number of bits per one vector
const unsigned bits_per_vect = 5;
// benchmark operation count
const unsigned benchmark_ops = 1000;
// subset of vectors used as a sample
const unsigned sample_cnt = 250;
// index values to extract
const unsigned result_set_cnt = 200;
// bit-vector type for this example
typedef bm::bvector<> TBVector;
// timing storage for benchmarking
bm::chrono_taker::duration_map_type timing_map;
/* BitMagic provides two GAP length tables for situations when we have
standard or embarassingly sparse vectors.
bm::gap_len_table - default standard
bm::gap_len_table_min - option for smaller vectors
Here we define an alternative table for very sparse vectors
*/
template<bool T> struct gap_len_table_sparse
{
static const bm::gap_word_t _len[bm::gap_levels];
};
template<bool T>
const bm::gap_word_t gap_len_table_sparse<T>::_len[bm::gap_levels] =
{ 8, 32, 128, 512 };
// simple bit-vector class factory for the project
//
static
TBVector* construct_bvector()
{
// in this example we plan to keep lots of vectors in memory, thus
// use parameters to minimize memory consumption
//
TBVector* bv =
new TBVector(bm::BM_GAP, // use GAP compressed mode
gap_len_table_sparse<true>::_len, // custom lens for super sparse vectors
max_size // limit the maximum size
);
return bv;
}
// Generic utility to destroy map of pointers
template<typename TM>
void destroy_map(TM& id_map)
{
for (typename TM::iterator it = id_map.begin();
it != id_map.end();
++it)
{
typename TM::mapped_type mp = it->second;
delete mp;
} // for
id_map.clear();
}
// ------------------------------------------------------------------
// Sample data structures
// ------------------------------------------------------------------
// Sample index structure to keep a map of in-memory bit-vectors
//
struct bv_index
{
typedef std::map<unsigned, TBVector*> map_type;
~bv_index()
{
destroy_map(idx_);
}
map_type idx_;
};
// Sample index structure to keep map of in-memory serialized/compressed bit-vectors
//
struct bvs_index
{
typedef std::vector<unsigned char> buffer_type;
typedef std::map<unsigned, buffer_type> map_type;
map_type idx_;
};
// Sample index structure to keep map of in-memory vector<unsigned int>
//
struct vect_index
{
typedef std::vector<unsigned int> buffer_type;
typedef std::map<unsigned, buffer_type> map_type;
map_type idx_;
};
// Sample index structure as in-memory sparse_vector
//
struct sparse_vect_index
{
struct vect_addr
{
unsigned offset;
unsigned size;
};
typedef bm::sparse_vector<unsigned, bm::bvector<> > sparse_vector_type;
typedef std::map<unsigned, vect_addr> map_type;
typedef std::vector< std::pair<uint64_t, unsigned> > delta_sum_map_type;
void get_vector(unsigned id, std::vector<unsigned>& vect) const;
sparse_vector_type sv_storage_;
sparse_vector_type sv_storage1_;
map_type idx_;
};
void sparse_vect_index::get_vector(unsigned id, std::vector<unsigned>& vect) const
{
map_type::const_iterator it = idx_.find(id);
if (it != idx_.end())
{
const sparse_vect_index::vect_addr& vaddr = it->second;
vect.resize(vaddr.size+1);
vect[0] = sv_storage1_.get(id);
for (unsigned j = 1; j < vect.size(); ++j)
{
unsigned a = sv_storage_.get(j + vaddr.offset - 1);
a += (vect[j-1] + 1);
vect[j] = a;
} // for j
}
else
{
vect.resize(0);
}
}
// --------------------------------------------------------------------
// set bits in a vector using various methods picked at random
///
// one method will generate a plato of non-random integers,
// another random integers of near neighbors
// the other adds ints randomly without following any system
//
static
void generate_random_vector(TBVector* bv)
{
unsigned method = rand() % 5; // pick a generation method
if (method == 0) // generate a incremental linear sequence at random location
{
unsigned seed_id = unsigned(rand()) % max_size;
for (unsigned i = seed_id; i < seed_id+bits_per_vect; ++i)
{
if (i >= max_size)
break;
bv->set_bit(i);
} // for i
}
else
if (method == 1) // generate near neighbors
{
unsigned seed_id = unsigned(rand()) % max_size;
unsigned id = seed_id;
for (unsigned i = 0; i < bits_per_vect; ++i)
{
if (id >= max_size)
break;
bv->set_bit(id);
id += (rand() % 10);
if (id >= max_size)
id = unsigned(rand()) % max_size;
} // for i
}
else // generate completely random bits
{
for (unsigned i = 0; i < bits_per_vect; ++i)
{
unsigned id = unsigned(rand()) % max_size;
if (i >= max_size) // paranoiya check
break;
bv->set_bit(id);
} // for i
}
}
// generate map of bit-vectors, each filled with just a few bits
//
static
void generate_bv_index(bv_index& bvi)
{
for (unsigned i = 0; i < index_size; ++i)
{
std::unique_ptr<TBVector> ap(construct_bvector());
generate_random_vector(ap.get());
if (!ap->any()) // integrity check
{
// this should never happen
std::cerr << "Warning. Empty vector generated!" << std::endl;
}
bvi.idx_[i] = ap.release();
}
}
// calculate memory footprint for in memory index
//
static
size_t calc_memory_footprint(const bv_index& bvi)
{
size_t mem_total = 0;
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
const TBVector* mp = it->second;
TBVector::statistics st;
mp->calc_stat(&st);
mem_total += st.memory_used;
mem_total += sizeof(void*);
} // for
return mem_total;
}
// convert bit-vector index to bit-vector serialized index
//
static
size_t convert_bv2bvs(const bv_index& bvi, bvs_index& bvs)
{
size_t mem_total = 0;
std::vector<unsigned char> buf; // prepare a temporary buffer
buf.reserve(1024);
// bit-vector serializer
// (keep it out of the serialization loop to minimize buffers re-allocations)
//
bm::serializer<TBVector> bvsr;
bvsr.byte_order_serialization(false);
bvsr.gap_length_serialization(false);
bvsr.set_compression_level(4);
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
unsigned id = it->first;
const TBVector* bvp = it->second;
TBVector::statistics st;
bvp->calc_stat(&st); // calculate max. serialized size
buf.resize(st.max_serialize_mem); // prepare the temp buffer
// run serialization, actual serialization size is expacted to be smaller
//
unsigned bvs_size = bvsr.serialize(*bvp, buf.data(), st.max_serialize_mem);
// move from temp serialization buffer to compressed in-memory index
//
bvs_index::buffer_type& vbuf = bvs.idx_[id];
vbuf.resize(bvs_size);
::memcpy(vbuf.data(), buf.data(), bvs_size);
mem_total += bvs_size;
mem_total += sizeof(std::vector<unsigned char>::size_type);
// paranoia check compare source and desirialized vectors
//
#ifdef DEBUG
{
TBVector bv1;
bm::deserialize(bv1, vbuf.data());
if (bv1.compare(*bvp) !=0 )
{
throw std::runtime_error("deserialization check failed");
}
}
#endif
} // for
return mem_total;
}
// convert bit-vector index to vector<usingned>
//
static
size_t convert_bv2vect(const bv_index& bvi, vect_index& vidx)
{
size_t mem_total = 0;
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
unsigned id = it->first;
const TBVector* bvp = it->second;
unsigned count = bvp->count(); // population count
vect_index::buffer_type& vect = vidx.idx_[id];
vect.resize(count);
for (TBVector::enumerator en = bvp->first(); en.valid(); ++en)
{
vect.push_back(*en);
}
mem_total +=
sizeof(vect_index::buffer_type::value_type) * vect.size() +
sizeof(vect_index::buffer_type::size_type);
} // for
return mem_total;
}
static
void bv2delta(const TBVector& bv, std::vector<unsigned>& vect)
{
// convert into a plain vector first
//
vect.resize(0);
for (TBVector::enumerator en = bv.first(); en.valid(); ++en)
{
vect.push_back(*en);
}
// convert into delta-vector
//
{
for (size_t k = vect.size()-1; k >= 1; --k)
{
vect[k] -= vect[k-1];
--vect[k];
} // for
}
}
// convert bit-vector index to bm::sparse_vector
//
static
size_t convert_bv2sv(const bv_index& bvi, sparse_vect_index& sv_idx)
{
size_t mem_total = 0;
std::vector<unsigned> vect;
sparse_vect_index::delta_sum_map_type delta_map;
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
unsigned id = it->first;
const TBVector* bvp = it->second;
bv2delta(*bvp, vect);
// compute sum of the delta-vector elements add to the sort map
{
uint64_t sum = 0;
for (unsigned k = 1; k < vect.size(); ++k)
{
sum += vect[k];
} // for
delta_map.push_back(std::make_pair(sum, id));
}
} // for
// sort by "enthropy" (sort of)
//
std::sort(delta_map.begin(), delta_map.end());
if (delta_map.size() != bvi.idx_.size()) // paranoia check
{
throw std::runtime_error("delta map size is incorrect");
}
unsigned sv_pos = 0; // current position in sparse vector
for (unsigned j = 0; j < delta_map.size(); ++j)
{
unsigned id = delta_map[j].second;
bv_index::map_type::const_iterator it = bvi.idx_.find(id);
if (it == bvi.idx_.end())
continue;
const TBVector& bv = *(it->second);
// convert into a plain delta vector again
bv2delta(bv, vect);
sparse_vect_index::vect_addr vaddr;
vaddr.offset = sv_pos;
vaddr.size = (unsigned)(vect.size() - 1);
sv_idx.sv_storage1_.set(id, vect[0]);
if (vaddr.size)
{
sv_idx.sv_storage_.import(&vect[1], vaddr.size, vaddr.offset);
sv_pos += vaddr.size;
}
sv_idx.idx_[id] = vaddr;
} // for
// optimize sparse vector storage, compute memory consumption
{
sparse_vect_index::sparse_vector_type::statistics st;
BM_DECLARE_TEMP_BLOCK(tb)
sv_idx.sv_storage_.optimize(tb, TBVector::opt_compress, &st);
mem_total += st.memory_used;
sv_idx.sv_storage1_.optimize(tb, TBVector::opt_compress, &st);
mem_total += st.memory_used;
}
// check
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
unsigned id = it->first;
const TBVector* bvp = it->second;
// convert into a plain vector first
//
vect.resize(0);
for (TBVector::enumerator en = bvp->first(); en.valid(); ++en)
{
vect.push_back(*en);
}
std::vector<unsigned> svect;
sv_idx.get_vector(id, svect);
if (svect.size() != vect.size())
{
std::cerr << "Size check failed! id = " << id
<< "size() = " << svect.size()
<< std::endl;
throw std::runtime_error("sparse vector content check failed");
}
for (unsigned k = 0; k < vect.size(); ++k)
{
if (vect[k] != svect[k])
{
std::cerr << "SV content check failed! id = " << id
<< " i=" << k << std::endl;
for (unsigned h = 0; h < vect.size(); ++h)
{
std::cout << "[" << vect[h] << "=" << svect[h] << "], ";
} // for h
std::cout << std::endl;
throw std::runtime_error("sparse vector content check failed");
}
} // for k
} // for
#ifdef DEBUG
bm::print_svector_stat(sv_idx.sv_storage_, true);
bm::print_svector_stat(sv_idx.sv_storage1_, true);
#endif
return mem_total;
}
// speed test for in-memory bit vectors
// benchmark performs a mix of logical operations
//
static
void speed_test_bv_index(const bv_index& bvi)
{
TBVector bv_join; // OR join vector
bm::chrono_taker tt1("1. bm::bvector<> index", 1, &timing_map);
// join all vectors using OR operation
for (bv_index::map_type::const_iterator it = bvi.idx_.begin();
it != bvi.idx_.end();
++it)
{
const TBVector* bvp = it->second;
bv_join |= *bvp;
} // for
bv_join.optimize();
// a group of random vectors from the index map, compute OR
// then compute AND with the join vector
//
TBVector bv_res(bm::BM_GAP);
std::vector<unsigned> result_set;
result_set.reserve(result_set_cnt); // memory reservation to avoid reallocs
for (unsigned i = 0; i < benchmark_ops; ++i)
{
bv_res.clear(true); // free all blocks
result_set.resize(0);
for (unsigned j = 0; j < sample_cnt; ++j)
{
unsigned id = unsigned(rand()) % index_size;
bv_index::map_type::const_iterator it = bvi.idx_.find(id);
if (it == bvi.idx_.end())
continue;
const TBVector& bv = *(it->second);
bv_res |= bv;
}
bv_res &= bv_join;
// enumerate the final result set, extract first N elements
//
TBVector::enumerator en = bv_res.first();
for (unsigned k = 0; en.valid() && k < result_set_cnt; ++k, ++en)
{
result_set.push_back(*en);
}
} // for i
tt1.add_repeats(benchmark_ops + 1);
}
// speed test for in-memory serialized bit vectors
// this function uses bm::operation_deserializer
// to perform logical operation between a BLOB and bvector<> in memory
// and avoids extra decompression overhead
//
static
void speed_test_bvs_index(const bvs_index& bvs)
{
TBVector bv_join; // OR join vector
BM_DECLARE_TEMP_BLOCK(tb)
bm::operation_deserializer<TBVector> des;
bm::chrono_taker tt1("2. serialized bvector", 1, &timing_map);
// join all vectors using OR operation
for (bvs_index::map_type::const_iterator it = bvs.idx_.begin();
it != bvs.idx_.end();
++it)
{
const bvs_index::buffer_type& svect = it->second;
if (svect.size() == 0)
{
throw std::runtime_error("empty buffer error");
}
const unsigned char* buf = it->second.data();
des.deserialize(bv_join, buf, tb, bm::set_OR);
} // for
bv_join.optimize();
// a group of random vectors from the index map, compute OR
// then compute AND with the join vector
//
TBVector bv_res(bm::BM_GAP);
std::vector<unsigned> result_set;
result_set.reserve(result_set_cnt); // memory reservation to avoid reallocs
for (unsigned i = 0; i < benchmark_ops; ++i)
{
bv_res.clear(true); // free all blocks
result_set.resize(0);
for (unsigned j = 0; j < sample_cnt; ++j)
{
unsigned id = unsigned(rand()) % index_size;
bvs_index::map_type::const_iterator it = bvs.idx_.find(id);
if (it == bvs.idx_.end())
continue;
const unsigned char* buf = it->second.data();
des.deserialize(bv_res, buf, tb, bm::set_OR);
} // for j
bv_res &= bv_join;
// enumerate the final result set, extract first N elements
//
TBVector::enumerator en = bv_res.first();
for (unsigned k = 0; en.valid() && k < result_set_cnt; ++k, ++en)
{
result_set.push_back(*en);
}
} // for i
tt1.add_repeats(benchmark_ops + 1);
}
static
void speed_test_vect_index(const vect_index& vecti)
{
TBVector bv_join; // OR join vector
bm::chrono_taker tt1("3. std::vector<unsigned> ", 1, &timing_map);
// join all vectors using OR operation
for (vect_index::map_type::const_iterator it = vecti.idx_.begin();
it != vecti.idx_.end();
++it)
{
const vect_index::buffer_type& vect = it->second;
if (vect.size() == 0)
{
throw std::runtime_error("empty buffer error");
}
bm::combine_or(bv_join, vect.begin(), vect.end());
} // for
bv_join.optimize();
// a group of random vectors from the index map, compute OR
// then compute AND with the join vector
//
TBVector bv_res(bm::BM_GAP);
std::vector<unsigned> result_set;
result_set.reserve(result_set_cnt); // memory reservation to avoid reallocs
for (unsigned i = 0; i < benchmark_ops; ++i)
{
bv_res.clear(true); // free all blocks
result_set.resize(0);
for (unsigned j = 0; j < sample_cnt; ++j)
{
unsigned id = unsigned(rand()) % index_size;
vect_index::map_type::const_iterator it = vecti.idx_.find(id);
if (it == vecti.idx_.end())
continue;
const vect_index::buffer_type& vect = it->second;
bm::combine_or(bv_join, vect.begin(), vect.end());
} // for j
bv_res &= bv_join;
// enumerate the final result set, extract first N elements
//
TBVector::enumerator en = bv_res.first();
for (unsigned k = 0; en.valid() && k < result_set_cnt; ++k, ++en)
{
result_set.push_back(*en);
}
} // for i
tt1.add_repeats(benchmark_ops + 1);
}
static
void speed_test_sv_index(const sparse_vect_index& svi)
{
TBVector bv_join; // OR join vector
bm::chrono_taker tt1("4. bm::sparse_vector<unsigned> ", 1, &timing_map);
std::vector<unsigned> vect;
// join all vectors using OR operation
for (sparse_vect_index::map_type::const_iterator it = svi.idx_.begin();
it != svi.idx_.end();
++it)
{
unsigned id = it->first;
svi.get_vector(id, vect);
bm::combine_or(bv_join, vect.begin(), vect.end());
} // for
bv_join.optimize();
// a group of random vectors from the index map, compute OR
// then compute AND with the join vector
//
TBVector bv_res(bm::BM_GAP);
std::vector<unsigned> result_set;
result_set.reserve(result_set_cnt); // memory reservation to avoid reallocs
for (unsigned i = 0; i < benchmark_ops; ++i)
{
bv_res.clear(true); // free all blocks
result_set.resize(0);
for (unsigned j = 0; j < sample_cnt; ++j)
{
unsigned id = unsigned(rand()) % index_size;
svi.get_vector(id, vect);
if (vect.size() == 0)
continue;
bm::combine_or(bv_join, vect.begin(), vect.end());
} // for j
bv_res &= bv_join;
// enumerate the final result set, extract first N elements
//
TBVector::enumerator en = bv_res.first();
for (unsigned k = 0; en.valid() && k < result_set_cnt; ++k, ++en)
{
result_set.push_back(*en);
}
} // for i
tt1.add_repeats(benchmark_ops + 1);
}
int main(void)
{
try
{
bv_index bvi; // regular in-memory index id to bvector<>
bvs_index bvs; // compressed in-memory index id to bvector<> BLOB
vect_index vecti; // index based on plain uncompressed vector<unsigned>
sparse_vect_index svi; // all ids in a sparse vector
// experiments generation, measuring memory footprints
//
generate_bv_index(bvi);
size_t bv_mem_total = calc_memory_footprint(bvi);
size_t bv_mem_total_MB = bv_mem_total / (1024*1024);
std::cout << "bm::bvector<> memory footprint = "
<< bv_mem_total << " (" << bv_mem_total_MB << "MB)"
<< std::endl;
size_t bvs_mem_total = convert_bv2bvs(bvi, bvs);
size_t bvs_mem_total_MB = bvs_mem_total / (1024*1024);
std::cout << "bm::bvector<> BLOB memory footprint = "
<< bvs_mem_total << " (" << bvs_mem_total_MB << "MB)"
<< std::endl;
size_t vecti_mem_total = convert_bv2vect(bvi, vecti);
size_t vecti_mem_total_MB = vecti_mem_total / (1024*1024);
std::cout << "std::vector<unsigned> memory footprint = "
<< vecti_mem_total << " (" << vecti_mem_total_MB << "MB)"
<< std::endl;
size_t svi_mem_total = convert_bv2sv(bvi, svi);
size_t svi_mem_total_MB = svi_mem_total / (1024*1024);
std::cout << "bm::sparse_vector<> memory footprint = "
<< svi_mem_total << " (" << svi_mem_total_MB << "MB)"
<< std::endl;
// run performance tests
//
speed_test_bv_index(bvi);
speed_test_bvs_index(bvs);
speed_test_vect_index(vecti);
speed_test_sv_index(svi);
std::cout << std::endl << "Performance (ops/sec):" << std::endl;
bm::chrono_taker::print_duration_map(timing_map, bm::chrono_taker::ct_ops_per_sec);
//getchar(); // uncomment to check memory consumption at the OS level
}
catch(std::exception& ex)
{
std::cerr << ex.what() << std::endl;
return 1;
}
return 0;
}
|