File: xsample04.cpp

package info (click to toggle)
bmagic 6.3.0-1
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 49,956 kB
  • sloc: cpp: 84,298; ansic: 9,703; sh: 1,664; makefile: 742
file content (642 lines) | stat: -rw-r--r-- 17,950 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
Copyright(c) 2018 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information please visit:  http://bitmagic.io
*/

/** \example xsample04.cpp

*/

/*! \file xsample04.cpp
    \brief Example: DNA substring search

*/

#include <iostream>
#include <sstream>
#include <chrono>
#include <regex>
#include <time.h>
#include <stdio.h>

#include <stdexcept>
#include <memory>
#include <vector>
#include <chrono>
#include <map>
#include <utility>
#include <algorithm>
#include <unordered_map>

#include "bm.h"
#include "bmalgo.h"
#include "bmserial.h"
#include "bmaggregator.h"

#include "bmdbg.h"
#include "bmtimer.h"


using namespace std;

static
void show_help()
{
    std::cerr
        << "BitMagic DNA Search Sample (c) 2018" << std::endl
        << "-fa   file-name            -- input FASTA file" << std::endl
        << "-s hi|lo                   -- run substring search benchmark" << std::endl
        << "-diag                      -- run diagnostics"  << std::endl
        << "-timing                    -- collect timings"  << std::endl
      ;
}




// Arguments
//
std::string  ifa_name;
bool         is_diag = false;
bool         is_timing = false;
bool         is_bench = false;
bool         is_search = false;
bool         h_word_set = true;

static
int parse_args(int argc, char *argv[])
{
    for (int i = 1; i < argc; ++i)
    {
        std::string arg = argv[i];
        if ((arg == "-h") || (arg == "--help"))
        {
            show_help();
            return 0;
        }

        if (arg == "-fa" || arg == "--fa")
        {
            if (i + 1 < argc)
            {
                ifa_name = argv[++i];
            }
            else
            {
                std::cerr << "Error: -fa requires file name" << std::endl;
                return 1;
            }
            continue;
        }

        if (arg == "-diag" || arg == "--diag" || arg == "-d" || arg == "--d")
            is_diag = true;
        if (arg == "-timing" || arg == "--timing" || arg == "-t" || arg == "--t")
            is_timing = true;
        if (arg == "-bench" || arg == "--bench" || arg == "-b" || arg == "--b")
            is_bench = true;
        if (arg == "-search" || arg == "--search" || arg == "-s" || arg == "--s")
        {
            is_search = true;
            if (i + 1 < argc)
            {
                std::string a = argv[i+1];
                if (a != "-")
                {
                    if (a == "l" || a == "lo")
                    {
                        h_word_set = false;
                        ++i;
                    }
                    else
                    if (a == "h" || a == "hi")
                    {
                        h_word_set = true;
                        ++i;
                    }
                }
            }
        }

    } // for i
    return 0;
}


// Global types
//
typedef std::map<std::string, unsigned>                     freq_map;
typedef std::vector<std::pair<unsigned, std::string> >      dict_vect;

typedef bm::aggregator<bm::bvector<> >  aggregator_type;

// ----------------------------------------------------------------------------

bm::chrono_taker::duration_map_type  timing_map;

// FASTA format parser
static
int load_FASTA(const std::string& fname, std::vector<char>& seq_vect)
{
    bm::chrono_taker tt1("1. Parse FASTA", 1, &timing_map);

    seq_vect.resize(0);
    std::ifstream fin(fname.c_str(), std::ios::in);
    if (!fin.good())
        return -1;

    std::string line;
    for (unsigned i = 0; std::getline(fin, line); ++i)
    {
        if (line.empty() ||
            line.front() == '>')
            continue;

        for (std::string::iterator it = line.begin(); it != line.end(); ++it)
            seq_vect.push_back(*it);
    } // for
    return 0;
}



/**
    Utility for keeping all DNA finger print vectors and search
    using various techniques
*/
class DNA_FingerprintScanner
{
public:
    enum { eA = 0, eC, eG, eT, eN, eEnd };

    DNA_FingerprintScanner() {}

    /// Build fingerprint bit-vectors from the original sequence
    ///
    void Build(const vector<char>& sequence)
    {
        // use bulk insert iterator (faster way to construct a bit-index)
        //
        bm::bvector<>::bulk_insert_iterator iA(m_FPrintBV[eA], bm::BM_SORTED);
        bm::bvector<>::bulk_insert_iterator iC(m_FPrintBV[eC], bm::BM_SORTED);
        bm::bvector<>::bulk_insert_iterator iG(m_FPrintBV[eG], bm::BM_SORTED);
        bm::bvector<>::bulk_insert_iterator iT(m_FPrintBV[eT], bm::BM_SORTED);
        bm::bvector<>::bulk_insert_iterator iN(m_FPrintBV[eN], bm::BM_SORTED);

        for (size_t i = 0; i < sequence.size(); ++i)
        {
            unsigned pos = unsigned(i);
            switch (sequence[i])
            {
            case 'A':
                iA = pos;
                break;
            case 'C':
                iC = pos;
                break;
            case 'G':
                iG = pos;
                break;
            case 'T':
                iT = pos;
                break;
            case 'N':
                iN = pos;
                break;
            default:
                break;
            }
        }
    }

    /// Return fingerprint bit-vector
    const bm::bvector<>& GetVector(char letter) const
    {
        switch (letter)
        {
        case 'A':
            return m_FPrintBV[eA];
        case 'C':
            return m_FPrintBV[eC];
        case 'G':
            return m_FPrintBV[eG];
        case 'T':
            return m_FPrintBV[eT];
        case 'N':
            return m_FPrintBV[eN];
        default:
            break;
        }
        throw runtime_error("Error. Invalid letter!");
    }

    /// Find word strings
    ///    using shift + and on fingerprint vectors
    /// (horizontal, non-fused basic method)
    ///
    void Find(const string& word, vector<unsigned>& res)
    {
        if (word.empty())
            return;
        bm::bvector<> bv(GetVector(word[0])); // step 1: copy first vector

        // run series of shifts + logical ANDs
        for (size_t i = 1; i < word.size(); ++i)
        {
            bv.shift_right();  // SHIFT the accumulator bit-vector
            // get and AND the next fingerprint
            const bm::bvector<>& bv_mask = GetVector(word[i]);
            bv &= bv_mask;
            
            auto any = bv.any();
            if (!any)
                break;
        }

        // translate results from bvector of word ends to result
        unsigned ws = unsigned(word.size()) - 1;
        TranslateResults(bv, ws, res);
    };


    /// This method uses cache blocked aggregator with fused SHIFT+AND kernel
    ///
    void FindAggFused(const string& word, vector<unsigned>& res)
    {
        if (word.empty())
            return;
        // first we setup aggregator, add a group of vectors to be processed
        m_Agg.reset();
        for (size_t i = 0; i < word.size(); ++i)
        {
            const bm::bvector<>& bv_mask = GetVector(word[i]);
            m_Agg.add(&bv_mask);
        }

        // now run the whole algorithm to get benefits of cache blocking
        //
        bm::bvector<> bv;
        m_Agg.combine_shift_right_and(bv);

        // translate results from bvector of word ends to result
        unsigned ws = unsigned(word.size()) - 1;
        TranslateResults(bv, ws, res);
    };
    
    /// Find a set of words in one pass using pipeline
    /// of aggregators (this is very experimental)
    ///
    void FindCollection(const vector<tuple<string,int> >& words,
                        vector<vector<unsigned>>& hits)
    {
        vector<unique_ptr<aggregator_type> > agg_pipeline;
        unsigned ws = 0;

        for (const auto& w : words)
        {
            unique_ptr<aggregator_type> agg_ptr(new aggregator_type());
            agg_ptr->set_operation(aggregator_type::BM_SHIFT_R_AND);
            
            const string& word = get<0>(w);
            for (size_t i = 0; i < word.size(); ++i)
            {
                const bm::bvector<>& bv_mask = GetVector(word[i]);
                agg_ptr->add(&bv_mask);
            }
            
            agg_pipeline.emplace_back(agg_ptr.release());
            ws = unsigned(word.size()) - 1;
        }

        // run the pipeline
        bm::aggregator_pipeline_execute<aggregator_type,
           vector<unique_ptr<aggregator_type> >::iterator>(agg_pipeline.begin(), agg_pipeline.end());

        // convert the results
        for (size_t i = 0; i < agg_pipeline.size(); ++i)
        {
            const aggregator_type* agg_ptr = agg_pipeline[i].get();
            auto bv = agg_ptr->get_target();
            vector<unsigned> res;
            res.reserve(12000);
            TranslateResults(*bv, ws, res);
            hits.emplace_back(res);
        }
    }

protected:

    /// Translate search results vector using (word size) left shift
    ///
    void TranslateResults(const bm::bvector<>& bv,
                          unsigned left_shift,
                          vector<unsigned>& res)
    {
        bm::bvector<>::enumerator en = bv.first();
        for (; en.valid(); ++en)
        {
            auto pos = *en;
            res.push_back(pos - left_shift);
        }
    }

private:
    bm::bvector<>   m_FPrintBV[eEnd];
    aggregator_type m_Agg;
};

static const size_t WORD_SIZE = 28;
using THitList = vector<unsigned>;

/// generate the most frequent words of specified length from the input sequence
///
static
void generate_kmers(vector<tuple<string,int>>& top_words,
                    vector<tuple<string,int>>& lo_words,
                    const vector<char>& data,
                    size_t N,
                    unsigned word_size)
{
    cout << "k-mer generation... " << endl;

    top_words.clear();
    lo_words.clear();

    if (data.size() < word_size)
        return;

    size_t end_pos = data.size() - word_size;
    size_t i = 0;
    map<string, int> words;
    while (i < end_pos)
    {
        string s(&data[i], word_size);
        if (s.find('N') == string::npos)
            words[s] += 1;
        i += word_size;
        if (i % 10000 == 0)
        {
            cout << "\r" << i << "/" << end_pos << flush;
        }
    }

    cout << endl << "Picking k-mer samples..." << flush;

    multimap<int,string, greater<int>> dst;
    for_each(words.begin(), words.end(), [&](const std::pair<string,int>& p)
    {
                 dst.emplace(p.second, p.first);
             });
    {
        auto it = dst.begin();
        for(size_t count = 0; count < N && it !=dst.end(); ++it,++count)
            top_words.emplace_back(it->second, it->first);
    }

    {
        auto it = dst.rbegin();
        for(size_t count = 0; count < N && it !=dst.rend(); ++it, ++count)
            lo_words.emplace_back(it->second, it->first);
    }

    cout << "OK" << endl;
}

/// 2-way string matching
///
static
void find_word_2way(vector<char>& data,
                       const char* word, unsigned word_size,
                       THitList& r)
{
    if (data.size() < word_size)
        return;

    size_t i = 0;
    size_t end_pos = data.size() - word_size;
    while (i < end_pos)
    {
        bool found = true;
        for (size_t j = i, k = 0, l = word_size - 1; l > k; ++j, ++k, --l)
        {
            if (data[j] != word[k] || data[i + l] != word[l])
            {
                found = false;
                break;
            }
        }
        if (found)
            r.push_back(unsigned(i));
        ++i;
    }
}

/// Find all words in one pass (cache coherent algorithm)
/// (variation of 2-way string matching for collection search)
///
static
void find_words(const vector<char>& data,
                vector<const char*> words,
                unsigned word_size,
                vector<vector<unsigned>>& hits)
{
    if (data.size() < word_size)
        return;

    size_t i = 0;
    size_t end_pos = data.size() - word_size;
    size_t words_size = words.size();
    while (i < end_pos)
    {
        for (size_t idx = 0; idx < words_size; ++idx)
        {
            auto& word = words[idx];
            bool found = true;
            for (size_t j = i, k = 0, l = word_size - 1; l > k; ++j, ++k, --l)
            {
                if (data[j] != word[k] || data[i + l] != word[l])
                {
                    found = false;
                    break;
                }
            } // for
            if (found)
            {
                hits[idx].push_back(unsigned(i));
                break;
            }
        } // for
        ++i;
    } // while
}


/// Check search result match
///
static
bool hitlist_compare(const THitList& h1, const THitList& h2)
{
    if (h1.size() != h2.size())
    {
        cerr << "size1 = " << h1.size() << " size2 = " << h2.size() << endl;
        return false;
    }
    for (size_t i = 0; i < h1.size(); ++i)
    {
        if (h1[i] != h2[i])
            return false;
    }
    return true;
}




int main(int argc, char *argv[])
{
    if (argc < 3)
    {
        show_help();
        return 1;
    }

    std::vector<char> seq_vect;

    try
    {
        auto ret = parse_args(argc, argv);
        if (ret != 0)
            return ret;

        DNA_FingerprintScanner idx;

        if (!ifa_name.empty())
        {
            auto res = load_FASTA(ifa_name, seq_vect);
            if (res != 0)
                return res;
            std::cout << "FASTA sequence size=" << seq_vect.size() << std::endl;
            
            {
                bm::chrono_taker tt1("2. Build DNA index", 1, &timing_map);
                idx.Build(seq_vect);
            }
        }
        

        if (is_search)
        {
            vector<tuple<string,int> > h_words;
            vector<tuple<string,int> > l_words;

            vector<tuple<string,int>>& words = h_word_set ? h_words : l_words;

            // generate search sets for benchmarking
            //
            generate_kmers(h_words, l_words, seq_vect, 25, WORD_SIZE);

            
            vector<THitList> word_hits;
            vector<THitList> word_hits_agg;

            // search all words in one pass and
            // store results in list of hits according to the order of words
            // (this method uses memory proximity
            //  of searched words to maximize CPU cache hit rate)
            
            {
                vector<const char*> word_list;
                for (const auto& w : words)
                {
                    word_list.push_back(get<0>(w).c_str());
                }
                word_hits.resize(words.size());
                for_each(word_hits.begin(), word_hits.end(), [](THitList& ht) {
                        ht.reserve(12000);
                    });
                
                bm::chrono_taker tt1("6. String search 2-way single pass",
                                      unsigned(words.size()), &timing_map);
                find_words(seq_vect, word_list, unsigned(WORD_SIZE), word_hits);
            }
            
            // collection search, runs all hits at once
            //
            {
                bm::chrono_taker tt1("7. Aggregated search single pass",
                                      unsigned(words.size()), &timing_map);
                
                idx.FindCollection(words, word_hits_agg);
            }
            
            // a few variants of word-by-word searches
            //
            for (size_t word_idx = 0; word_idx < words.size(); ++ word_idx)
            {
                auto& word = get<0>(words[word_idx]);
                THitList hits1;
  
                {
                    bm::chrono_taker tt1("3. String search 2-way", 1, &timing_map);
                    find_word_2way(seq_vect,
                                      word.c_str(), unsigned(word.size()),
                                      hits1);
                }
                THitList hits2;
                {
                    bm::chrono_taker tt1("4. Search with bvector SHIFT+AND", 1, &timing_map);
                    idx.Find(word, hits2);
                }
                THitList hits4;
                {
                    bm::chrono_taker tt1("5. Search with aggregator fused SHIFT+AND", 1, &timing_map);
                    idx.FindAggFused(word, hits4);
                }

                // check correctness
                if (!hitlist_compare(hits1, hits2)
                    || !hitlist_compare(hits2, hits4))
                {
                    cout << "Mismatch ERROR for: " <<  word << endl;
                }
                else
                if (!hitlist_compare(word_hits[word_idx], hits1)
                    || !hitlist_compare(word_hits_agg[word_idx], hits1))
                {
                    cout << "Sigle pass mismatch ERROR for: " <<  word << endl;
                }
                else
                {
                    cout << word_idx << ": " <<  word << ": " << hits1.size() << " hits " << endl;
                }
            }
            
        }

        if (is_timing)  // print all collected timings
        {
            std::cout << std::endl << "Performance:" << std::endl;
            bm::chrono_taker::print_duration_map(timing_map, bm::chrono_taker::ct_all);
        }
    }
    catch (std::exception& ex)
    {
        std::cerr << "Error:" << ex.what() << std::endl;
        return 1;
    }

    return 0;
}