1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
import os
import numpy as np
from bmtk.builder.networks import NetworkBuilder
# Step 1: Create a v1 mock network of 14 cells (nodes) with across 7 different cell "types"
net = NetworkBuilder("v1")
net.add_nodes(N=2, # specifiy the number of cells belong to said group.
pop_name='Scnn1a', location='VisL4', ei='e', # pop_name, location, and ei are optional parameters that help's identifies properties of the cells. The modeler can choose whatever key-value pairs as they deem appropiate.
positions=[(28.753, -364.868, -161.705), # The following properties we are passing in lists
(48.753, -344.868, -141.705)], # of size N. Doing so will uniquely assign different
tuning_angle=[0.0, 25.0], # values to each individual cell
rotation_angle_yaxis=[3.55501, 3.81531],
rotation_angle_zaxis=-3.646878266, # Note that the y-axis rotation is differnt for each cell (ie. given a list of size N), but with z-axis rotation all cells have the same value
model_type='biophysical', # The type of cell we are using
model_template='ctdb:Biophys1.hoc', # Tells the simulator that when building cells models use a hoc_template specially created for parsing Allen Cell-types file models. Value would be different if we were using NeuronML or different model files
model_processing='aibs_perisomatic', # further instructions for how to processes a cell model. In this case aibs_perisomatic is a built-in directive to cut the axon in a specific way
dynamics_params='472363762_fit.json', # Name of file (downloaded from Allen Cell-Types) used to set model parameters and channels
morphology='Scnn1a-Tg3-Cre_Ai14_IVSCC_-177300.01.02.01_473845048_m.swc') # Name of morphology file downloaded
net.add_nodes(N=2, pop_name='Rorb', location='VisL4', ei='e',
positions=[(241.092, -349.263, 146.916), (201.092, -399.263, 126.916)],
tuning_angle=[50.0, 75.0],
rotation_angle_yaxis=[3.50934, 3.50934],
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
model_processing='aibs_perisomatic',
dynamics_params='473863510_fit.json',
morphology='Rorb-IRES2-Cre-D_Ai14_IVSCC_-168053.05.01.01_325404214_m.swc',
rotation_angle_zaxis=-4.159763785)
net.add_nodes(N=2, pop_name='Nr5a1', location='VisL4', ei='e',
positions=[(320.498, -351.259, 20.273), (310.498, -371.259, 10.273)],
tuning_angle=[100.0, 125.0],
rotation_angle_yaxis=[0.72202, 0.72202],
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
model_processing='aibs_perisomatic',
dynamics_params='473863035_fit.json',
morphology='Nr5a1-Cre_Ai14_IVSCC_-169250.03.02.01_471087815_m.swc',
rotation_angle_zaxis=-2.639275277)
# Note that in the previous cells we set the tuning_angle, but for PV1 and PV2 such parameter is absent (as it is not
# applicable for inhibitory cells). The BMTK builder allows heterogeneous cell properties as dictated by the model
net.add_nodes(N=2, pop_name='PV1', location='VisL4', ei='i',
positions=[(122.373, -352.417, -216.748), (102.373, -342.417, -206.748)],
rotation_angle_yaxis=[2.92043, 2.92043],
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
model_processing='aibs_perisomatic',
dynamics_params='472912177_fit.json',
morphology='Pvalb-IRES-Cre_Ai14_IVSCC_-176847.04.02.01_470522102_m.swc',
rotation_angle_zaxis=-2.539551891)
net.add_nodes(N=2, pop_name='PV2', location='VisL4', ei='i',
positions=[(350.321, -372.535, -18.282), (360.321, -371.535, -12.282)],
rotation_angle_yaxis=[5.043336, 5.043336],
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
model_processing='aibs_perisomatic',
dynamics_params='473862421_fit.json',
morphology='Pvalb-IRES-Cre_Ai14_IVSCC_-169125.03.01.01_469628681_m.swc',
rotation_angle_zaxis=-3.684439949)
# Along with our biophysical cells our network will also include integate-and-fire point cells
net.add_nodes(N=2, pop_name='LIF_exc', location='VisL4', ei='e',
positions=[(-243.04, -342.352, -665.666), (-233.04, -332.352, -675.666)],
tuning_angle=[150.0, 175.0],
model_type='point_process', # use point_process to indicate were are using point model cells
model_template='nrn:IntFire1', # Tell the simulator to use the NEURON built-in IntFire1 type cell
dynamics_params='IntFire1_exc_1.json')
net.add_nodes(N=2, pop_name='LIF_inh', location='VisL4', ei='i',
positions=[(211.04, -321.333, -631.593), (218.04, -327.333, -635.593)],
model_type='point_process',
model_template='nrn:IntFire1',
dynamics_params='IntFire1_inh_1.json')
# Step 2: We want to connect our network. Just like how we have node-types concept we group our connections into
# "edge-types" that share rules and properties
net.add_edges(source={'ei': 'i'}, # For our synaptic source cells we select all inhibitory cells (ei==i), incl. both biophys and point
target={'ei': 'i', 'model_type': 'biophysical'}, # For our synaptic target we select all inhibitory biophysically detailed cells
connection_rule=5, # All matching source/target pairs will have
syn_weight=0.0002, # synaptic weight
target_sections=['somatic', 'basal'], # Gives the simulator the target sections and
distance_range=[0.0, 1e+20], # distances (from soma) when creating connections
delay=2.0,
dynamics_params='GABA_InhToInh.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'model_type': 'point_process'},
connection_rule=5,
syn_weight=0.00225,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousInh.json')
net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'biophysical'},
connection_rule=lambda trg, src: 5,
syn_weight=0.00018,
weight_function='wmax',
distance_range=[0.0, 50.0],
target_sections=['somatic', 'basal', 'apical'],
delay=2.0,
dynamics_params='GABA_InhToExc.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'point_process'},
connection_rule=5,
syn_weight=0.009,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousInh.json')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV1'},
connection_rule=5,
syn_weight=0.00035,
weight_function='wmax',
distance_range=[0.0, 1e+20],
target_sections=['somatic', 'basal'],
delay=2.0,
dynamics_params='AMPA_ExcToInh.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV2'},
connection_rule=5,
syn_weight=0.00027,
weight_function='wmax',
distance_range=[0.0, 1e+20],
target_sections=['somatic', 'basal'],
delay=2.0,
dynamics_params='AMPA_ExcToInh.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'},
connection_rule=5,
syn_weight=0.0043,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousExc.json')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'},
connection_rule=5,
syn_weight=6.4e-05,
weight_function='gaussianLL',
weight_sigma=50.0,
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Rorb'},
connection_rule=5,
syn_weight=5.5e-05,
weight_function='gaussianLL',
weight_sigma=50.0,
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Nr5a1'},
connection_rule=5,
syn_weight=7.2e-05,
weight_function='gaussianLL',
weight_sigma=50.0,
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'},
connection_rule=5,
syn_weight=0.0019,
weight_function='gaussianLL',
weight_sigma=50.0,
delay=2.0,
dynamics_params='instanteneousExc.json')
net.build()
net.save(output_dir='network')
def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0):
X = np.random.uniform(x0, x1, N)
Y = np.random.uniform(y0, y1, N)
return np.column_stack((X, Y))
def select_source_cells(src_cells, trg_cell, n_syns):
if 'tuning_angle' in trg_cell:
synapses = [n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells]
else:
synapses = [n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells]
return synapses
lgn = NetworkBuilder("lgn")
lgn.add_nodes(N=30, pop_name='tON', ei='e', location='LGN',
positions=generate_positions(30),
model_type='virtual')
lgn.add_nodes(N=30, pop_name='tOFF', ei='e', location='LGN',
positions=generate_positions(30),
model_type='virtual')
lgn.add_nodes(N=30, pop_name='tONOFF', ei='e', location='LGN',
positions=generate_positions(30),
model_type='virtual')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='Rorb'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=5e-05,
weight_function='wmax',
distance_range=[0.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='Nr5a1'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=5e-05,
weight_function='wmax',
distance_range=[0.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='Scnn1a'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=4e-05,
weight_function='wmax',
distance_range=[0.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='PV1'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=0.0001,
weight_function='wmax',
distance_range=[0.0, 1.0e+20],
target_sections=['somatic', 'basal'],
delay=2.0,
dynamics_params='AMPA_ExcToInh.json',
model_template='exp2syn')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='PV2'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=9e-05,
weight_function='wmax',
distance_range=[0.0, 1.0e+20],
target_sections=['somatic', 'basal'],
delay=2.0,
dynamics_params='AMPA_ExcToInh.json',
model_template='exp2syn')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='LIF_exc'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=0.0045,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousExc.json')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='LIF_inh'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'n_syns': 10},
syn_weight=0.002,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousExc.json')
lgn.build()
lgn.save(output_dir='network')
tw = NetworkBuilder("tw")
tw.add_nodes(N=30, pop_name='TW', ei='e', location='TW', model_type='virtual')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='Rorb'),
connection_rule=5,
syn_weight=0.00015,
weight_function='wmax',
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='Scnn1a'),
connection_rule=5,
syn_weight=0.00019,
weight_function='wmax',
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='Nr5a1'),
connection_rule=5,
syn_weight=0.00019,
weight_function='wmax',
distance_range=[30.0, 150.0],
target_sections=['basal', 'apical'],
delay=2.0,
dynamics_params='AMPA_ExcToExc.json',
model_template='exp2syn')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='PV1'),
connection_rule=5,
syn_weight=0.0022,
weight_function='wmax',
distance_range=[0.0, 1.0e+20],
target_sections=['basal', 'somatic'],
delay=2.0,
dynamics_params='AMPA_ExcToInh.json',
model_template='exp2syn')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='PV2'),
connection_rule = 5,
syn_weight = 0.0013,
weight_function = 'wmax',
distance_range = [0.0, 1.0e+20],
target_sections = ['basal', 'somatic'],
delay = 2.0,
dynamics_params = 'AMPA_ExcToInh.json',
model_template = 'exp2syn')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='LIF_exc'),
connection_rule=5,
syn_weight=0.015,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousExc.json')
tw.add_edges(source=tw.nodes(), target=net.nodes(pop_name='LIF_inh'),
connection_rule=5,
syn_weight=0.05,
weight_function='wmax',
delay=2.0,
dynamics_params='instanteneousExc.json')
tw.build()
tw.save(output_dir='network')
|