1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
import os
import numpy as np
from bmtk.builder import NetworkBuilder
from bmtk.builder.bionet import SWCReader
from bmtk.utils.io.spike_trains import PoissonSpikesGenerator
from bmtk.builder.auxi.node_params import positions_columinar, xiter_random
build_recurrent_edges = True
# List of non-virtual cell models
bio_models = [
{
'model_name': 'Scnn1a', 'ei': 'e',
'morphology': 'Scnn1a_473845048_m.swc',
'model_template': 'nml:Cell_472363762.cell.nml'
},
{
'model_name': 'Rorb', 'ei': 'e',
'morphology': 'Rorb_325404214_m.swc',
'model_template': 'nml:Cell_473863510.cell.nml'
},
{
'model_name': 'Nr5a1', 'ei': 'e',
'morphology': 'Nr5a1_471087815_m.swc',
'model_template': 'nml:Cell_473863035.cell.nml'
},
{
'model_name': 'PV1', 'ei': 'i',
'morphology': 'Pvalb_470522102_m.swc',
'model_template': 'nml:Cell_472912177.cell.nml'
},
{
'model_name': 'PV2', 'ei': 'i',
'morphology': 'Pvalb_469628681_m.swc',
'model_template': 'nml:Cell_473862421.cell.nml'
}
]
point_models = [
{
'model_name': 'LIF_exc', 'ei': 'e',
'dynamics_params': 'IntFire1_exc_1.json'
},
{
'model_name': 'LIF_inh', 'ei': 'i',
'dynamics_params': 'IntFire1_inh_1.json'
}
]
morphologies = {p['model_name']: SWCReader(os.path.join('../biophys_components/morphologies', p['morphology']))
for p in bio_models}
def build_edges(src, trg, sections=['basal', 'apical'], dist_range=[50.0, 150.0]):
"""Function used to randomly assign a synaptic location based on the section (soma, basal, apical) and an
arc-length dist_range from the soma. This function should be passed into the network and called during the build
process.
:param src: source cell (dict)
:param trg: target cell (dict)
:param sections: list of target cell sections to synapse onto
:param dist_range: range (distance from soma center) to place
:return:
"""
# Get morphology and soma center for the target cell
swc_reader = morphologies[trg['model_name']]
target_coords = [trg['x'], trg['y'], trg['z']]
sec_ids, sec_xs = swc_reader.choose_sections(sections, dist_range) # randomly choose sec_ids
coords = swc_reader.get_coord(sec_ids, sec_xs, soma_center=target_coords) # get coords of sec_ids
dist = swc_reader.get_dist(sec_ids)
swctype = swc_reader.get_type(sec_ids)
return sec_ids, sec_xs, coords[0][0], coords[0][1], coords[0][2], dist[0], swctype[0]
# Build a network of 300 biophysical cells to simulate
internal = NetworkBuilder("internal")
for i, model_props in enumerate(bio_models):
n_cells = 80 if model_props['ei'] == 'e' else 30 # 80% excitatory, 20% inhib
# Randomly get positions uniformly distributed in a column
positions = positions_columinar(N=n_cells, center=[0, 10.0, 0], max_radius=50.0, height=200.0)
internal.add_nodes(N=n_cells,
x=positions[:, 0], y=positions[:, 1], z=positions[:, 2],
rotation_angle_yaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi), # randomly rotate y axis
rotation_angle_zaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi), #
model_type='biophysical',
model_processing='aibs_perisomatic',
**model_props)
for model_props in point_models:
n_cells = 75 # Just assume 75 cells for both point inhibitory and point excitatory
positions = positions_columinar(N=n_cells, center=[0, 10.0, 0], max_radius=50.0, height=200.0)
internal.add_nodes(N=n_cells,
x=positions[:, 0], y=positions[:, 1], z=positions[:, 2],
model_type='point_process',
model_template='nrn:IntFire1',
**model_props)
if build_recurrent_edges:
def n_connections(src, trg, prob=0.1, min_syns=1, max_syns=5):
if src.node_id == trg.node_id:
return 0
return 0 if np.random.uniform() > prob else np.random.randint(min_syns, max_syns)
# Connections onto biophysical components, use the connection map to save section and position of every synapse
# exc --> exc connections
cm = internal.add_edges(source={'ei': 'e'}, target={'ei': 'e', 'model_type': 'biophysical'},
connection_rule=n_connections,
connection_params={'prob': 0.2},
dynamics_params='AMPA_ExcToExc.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=6.0e-05, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
rule_params={'sections': ['basal', 'apical'], 'dist_range': [30.0, 150.0]},
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
# exc --> inh connections
cm = internal.add_edges(source={'ei': 'e'}, target={'ei': 'i', 'model_type': 'biophysical'},
connection_rule=n_connections,
dynamics_params='AMPA_ExcToInh.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=0.0006, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
rule_params={'sections': ['somatic', 'basal'], 'dist_range': [0.0, 1.0e+20]},
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
# inh --> exc connections
cm = internal.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'biophysical'},
connection_rule=n_connections,
dynamics_params='GABA_InhToExc.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=0.002, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
rule_params={'sections': ['somatic', 'basal', 'apical'], 'dist_range': [0.0, 50.0]},
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
# inh --> inh connections
cm = internal.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'model_type': 'biophysical'},
connection_rule=n_connections,
connection_params={'prob': 0.2},
dynamics_params='GABA_InhToInh.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=0.00015, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
rule_params={'sections': ['somatic', 'basal'], 'dist_range': [0.0, 1.0e+20]},
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
# For connections on point neurons it doesn't make sense to save syanpatic location
cm = internal.add_edges(source={'ei': 'e'}, target={'model_type': 'point_process'},
connection_rule=n_connections,
dynamics_params='instanteneousExc.json',
delay=2.0)
cm.add_properties('syn_weight', rule=0.0019, dtypes=np.float)
cm = internal.add_edges(source={'ei': 'i'}, target={'model_type': 'point_process'},
connection_rule=n_connections,
dynamics_params='instanteneousInh.json',
delay=2.0)
cm.add_properties('syn_weight', rule=0.0019, dtypes=np.float)
internal.build()
print('Saving internal')
internal.save(output_dir='network')
print('Building external connections')
external = NetworkBuilder("external")
external.add_nodes(N=100, model_type='virtual', ei='e')
cm = external.add_edges(target=internal.nodes(ei='e', model_type='biophysical'), source=external.nodes(),
connection_rule=lambda *_: np.random.randint(0, 5),
dynamics_params='AMPA_ExcToExc.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=0.00041, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
rule_params={'sections': ['basal', 'apical', 'somatic']},
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
cm = external.add_edges(target=internal.nodes(ei='i', model_type='biophysical'), source=external.nodes(),
connection_rule=lambda *_: np.random.randint(0, 5),
dynamics_params='AMPA_ExcToInh.json',
model_template='Exp2Syn',
delay=2.0)
cm.add_properties('syn_weight', rule=0.00095, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
rule=build_edges,
dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])
cm = external.add_edges(target=internal.nodes(model_type='point_process'), source=external.nodes(),
connection_rule=lambda *_: np.random.randint(0, 5),
dynamics_params='instanteneousExc.json',
delay=2.0)
cm.add_properties('syn_weight', rule=0.045, dtypes=np.float)
external.build()
print('Saving external')
external.save(output_dir='network')
|