File: build_network.py

package info (click to toggle)
bmtk 0.0%2Bgit20210109.8572664%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,876 kB
  • sloc: python: 24,853; javascript: 1,998; makefile: 34; sh: 16
file content (215 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import numpy as np

from bmtk.builder import NetworkBuilder
from bmtk.builder.bionet import SWCReader
from bmtk.utils.io.spike_trains import PoissonSpikesGenerator
from bmtk.builder.auxi.node_params import positions_columinar, xiter_random

build_recurrent_edges = True

# List of non-virtual cell models
bio_models = [
    {
        'model_name': 'Scnn1a', 'ei': 'e',
        'morphology': 'Scnn1a_473845048_m.swc',
        'model_template': 'nml:Cell_472363762.cell.nml'
    },
    {
        'model_name': 'Rorb', 'ei': 'e',
        'morphology': 'Rorb_325404214_m.swc',
        'model_template': 'nml:Cell_473863510.cell.nml'
    },
    {
        'model_name': 'Nr5a1', 'ei': 'e',
        'morphology': 'Nr5a1_471087815_m.swc',
        'model_template': 'nml:Cell_473863035.cell.nml'
    },
    {
        'model_name': 'PV1', 'ei': 'i',
        'morphology': 'Pvalb_470522102_m.swc',
        'model_template': 'nml:Cell_472912177.cell.nml'
    },
    {
        'model_name': 'PV2', 'ei': 'i',
        'morphology': 'Pvalb_469628681_m.swc',
        'model_template': 'nml:Cell_473862421.cell.nml'
    }
]

point_models = [
    {
        'model_name': 'LIF_exc', 'ei': 'e',
        'dynamics_params': 'IntFire1_exc_1.json'
    },
    {
        'model_name': 'LIF_inh', 'ei': 'i',
        'dynamics_params': 'IntFire1_inh_1.json'
    }
]


morphologies = {p['model_name']: SWCReader(os.path.join('../biophys_components/morphologies', p['morphology']))
                for p in bio_models}
def build_edges(src, trg, sections=['basal', 'apical'], dist_range=[50.0, 150.0]):
    """Function used to randomly assign a synaptic location based on the section (soma, basal, apical) and an
    arc-length dist_range from the soma. This function should be passed into the network and called during the build
    process.

    :param src: source cell (dict)
    :param trg: target cell (dict)
    :param sections: list of target cell sections to synapse onto
    :param dist_range: range (distance from soma center) to place
    :return:
    """
    # Get morphology and soma center for the target cell
    swc_reader = morphologies[trg['model_name']]
    target_coords = [trg['x'], trg['y'], trg['z']]

    sec_ids, sec_xs = swc_reader.choose_sections(sections, dist_range)  # randomly choose sec_ids
    coords = swc_reader.get_coord(sec_ids, sec_xs, soma_center=target_coords)  # get coords of sec_ids
    dist = swc_reader.get_dist(sec_ids)
    swctype = swc_reader.get_type(sec_ids)
    return sec_ids, sec_xs, coords[0][0], coords[0][1], coords[0][2], dist[0], swctype[0]


# Build a network of 300 biophysical cells to simulate
internal = NetworkBuilder("internal")
for i, model_props in enumerate(bio_models):
    n_cells = 80 if model_props['ei'] == 'e' else 30  # 80% excitatory, 20% inhib

    # Randomly get positions uniformly distributed in a column
    positions = positions_columinar(N=n_cells, center=[0, 10.0, 0], max_radius=50.0, height=200.0)

    internal.add_nodes(N=n_cells,
                       x=positions[:, 0], y=positions[:, 1], z=positions[:, 2],
                       rotation_angle_yaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi),  # randomly rotate y axis
                       rotation_angle_zaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi),  #
                       model_type='biophysical',
                       model_processing='aibs_perisomatic',
                       **model_props)

for model_props in point_models:
    n_cells = 75  # Just assume 75 cells for both point inhibitory and point excitatory
    positions = positions_columinar(N=n_cells, center=[0, 10.0, 0], max_radius=50.0, height=200.0)
    internal.add_nodes(N=n_cells,
                       x=positions[:, 0], y=positions[:, 1], z=positions[:, 2],
                       model_type='point_process',
                       model_template='nrn:IntFire1',
                       **model_props)

if build_recurrent_edges:
    def n_connections(src, trg, prob=0.1, min_syns=1, max_syns=5):
        if src.node_id == trg.node_id:
            return 0

        return 0 if np.random.uniform() > prob else np.random.randint(min_syns, max_syns)


    # Connections onto biophysical components, use the connection map to save section and position of every synapse
    # exc --> exc connections
    cm = internal.add_edges(source={'ei': 'e'}, target={'ei': 'e', 'model_type': 'biophysical'},
                            connection_rule=n_connections,
                            connection_params={'prob': 0.2},
                            dynamics_params='AMPA_ExcToExc.json',
                            model_template='Exp2Syn',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=6.0e-05, dtypes=np.float)
    cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                      rule=build_edges,
                      rule_params={'sections': ['basal', 'apical'], 'dist_range': [30.0, 150.0]},
                      dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

    # exc --> inh connections
    cm = internal.add_edges(source={'ei': 'e'}, target={'ei': 'i', 'model_type': 'biophysical'},
                            connection_rule=n_connections,
                            dynamics_params='AMPA_ExcToInh.json',
                            model_template='Exp2Syn',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=0.0006, dtypes=np.float)
    cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                      rule=build_edges,
                      rule_params={'sections': ['somatic', 'basal'], 'dist_range': [0.0, 1.0e+20]},
                      dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

    # inh --> exc connections
    cm = internal.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'biophysical'},
                            connection_rule=n_connections,
                            dynamics_params='GABA_InhToExc.json',
                            model_template='Exp2Syn',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=0.002, dtypes=np.float)
    cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                      rule=build_edges,
                      rule_params={'sections': ['somatic', 'basal', 'apical'], 'dist_range': [0.0, 50.0]},
                      dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

    # inh --> inh connections
    cm = internal.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'model_type': 'biophysical'},
                            connection_rule=n_connections,
                            connection_params={'prob': 0.2},
                            dynamics_params='GABA_InhToInh.json',
                            model_template='Exp2Syn',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=0.00015, dtypes=np.float)
    cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                      rule=build_edges,
                      rule_params={'sections': ['somatic', 'basal'], 'dist_range': [0.0, 1.0e+20]},
                      dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

    # For connections on point neurons it doesn't make sense to save syanpatic location
    cm = internal.add_edges(source={'ei': 'e'}, target={'model_type': 'point_process'},
                            connection_rule=n_connections,
                            dynamics_params='instanteneousExc.json',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=0.0019, dtypes=np.float)

    cm = internal.add_edges(source={'ei': 'i'}, target={'model_type': 'point_process'},
                            connection_rule=n_connections,
                            dynamics_params='instanteneousInh.json',
                            delay=2.0)
    cm.add_properties('syn_weight', rule=0.0019, dtypes=np.float)

internal.build()

print('Saving internal')
internal.save(output_dir='network')


print('Building external connections')
external = NetworkBuilder("external")
external.add_nodes(N=100, model_type='virtual', ei='e')
cm = external.add_edges(target=internal.nodes(ei='e', model_type='biophysical'), source=external.nodes(),
                        connection_rule=lambda *_: np.random.randint(0, 5),
                        dynamics_params='AMPA_ExcToExc.json',
                        model_template='Exp2Syn',
                        delay=2.0)
cm.add_properties('syn_weight', rule=0.00041, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                  rule=build_edges,
                  rule_params={'sections': ['basal', 'apical', 'somatic']},
                  dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

cm = external.add_edges(target=internal.nodes(ei='i', model_type='biophysical'), source=external.nodes(),
                        connection_rule=lambda *_: np.random.randint(0, 5),
                        dynamics_params='AMPA_ExcToInh.json',
                        model_template='Exp2Syn',
                        delay=2.0)
cm.add_properties('syn_weight', rule=0.00095, dtypes=np.float)
cm.add_properties(['sec_id', 'sec_x', 'pos_x', 'pos_y', 'pos_z', 'dist', 'type'],
                  rule=build_edges,
                  dtypes=[np.int32, np.float, np.float, np.float, np.float, np.float, np.uint8])

cm = external.add_edges(target=internal.nodes(model_type='point_process'), source=external.nodes(),
                        connection_rule=lambda *_: np.random.randint(0, 5),
                        dynamics_params='instanteneousExc.json',
                        delay=2.0)
cm.add_properties('syn_weight', rule=0.045, dtypes=np.float)


external.build()

print('Saving external')
external.save(output_dir='network')