File: NaV.mod

package info (click to toggle)
bmtk 0.0%2Bgit20210109.8572664%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,876 kB
  • sloc: python: 24,853; javascript: 1,998; makefile: 34; sh: 16
file content (186 lines) | stat: -rw-r--r-- 4,061 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
TITLE Mouse sodium current
: Kinetics of Carter et al. (2012)
: Based on 37 degC recordings from mouse hippocampal CA1 pyramids

NEURON {
  SUFFIX NaV
  USEION na READ ena WRITE ina
  RANGE g, gbar
}

UNITS { 
	(mV) = (millivolt)
	(S) = (siemens)
}

PARAMETER {
	gbar = .015			(S/cm2)

	: kinetic parameters
	Con = 0.01			(/ms)					: closed -> inactivated transitions
	Coff = 40				(/ms)					: inactivated -> closed transitions
	Oon = 8					(/ms)					: open -> Ineg transition
	Ooff = 0.05			(/ms)					: Ineg -> open transition
	alpha = 400			(/ms)
	beta = 12				(/ms)
	gamma = 250			(/ms)					: opening
	delta = 60			(/ms)					: closing

	alfac = 2.51
	btfac = 5.32

	: Vdep
	x1 = 24				(mV)								: Vdep of activation (alpha)
	x2 = -24			(mV)								: Vdep of deactivation (beta)
}

ASSIGNED {

	: rates
	f01  		(/ms)
	f02  		(/ms)
	f03 		(/ms)
	f04			(/ms)
	f0O 		(/ms)
	f11 		(/ms)
	f12 		(/ms)
	f13 		(/ms)
	f14 		(/ms)
	f1n 		(/ms)
	fi1 		(/ms)
	fi2 		(/ms)
	fi3 		(/ms)
	fi4 		(/ms)
	fi5 		(/ms)
	fin 		(/ms)

	b01 		(/ms)
	b02 		(/ms)
	b03 		(/ms)
	b04			(/ms)
	b0O 		(/ms)
	b11  		(/ms)
	b12 		(/ms)
	b13 		(/ms)
	b14 		(/ms)
	b1n 		(/ms)
	bi1 		(/ms)
	bi2 		(/ms)
	bi3 		(/ms)
	bi4 		(/ms)
	bi5 		(/ms)
	bin 		(/ms)
	
	v				(mV)
 	ena			(mV)
	ina			(milliamp/cm2)
	g				(S/cm2)
	celsius (degC)
}

STATE {
	C1 FROM 0 TO 1
	C2 FROM 0 TO 1
	C3 FROM 0 TO 1
	C4 FROM 0 TO 1
	C5 FROM 0 TO 1
	I1 FROM 0 TO 1
	I2 FROM 0 TO 1
	I3 FROM 0 TO 1
	I4 FROM 0 TO 1
	I5 FROM 0 TO 1
	O FROM 0 TO 1
	I6 FROM 0 TO 1
}

BREAKPOINT {
	SOLVE activation METHOD sparse
	g = gbar * O
	ina = g * (v - ena)
}

INITIAL {
 rates(v)
 SOLVE seqinitial
}

KINETIC activation
{
	rates(v)
	~ C1 <-> C2					(f01,b01)
	~ C2 <-> C3					(f02,b02)
	~ C3 <-> C4					(f03,b03)
	~ C4 <-> C5					(f04,b04)
	~ C5 <-> O					(f0O,b0O)
	~ O <-> I6					(fin,bin)
	~ I1 <-> I2					(f11,b11)
	~ I2 <-> I3					(f12,b12)
	~ I3 <-> I4					(f13,b13)
	~ I4 <-> I5					(f14,b14)
	~ I5 <-> I6					(f1n,b1n)
	~ C1 <-> I1					(fi1,bi1)
	~ C2 <-> I2					(fi2,bi2)
	~ C3 <-> I3					(fi3,bi3)
 	~ C4 <-> I4					(fi4,bi4)
 	~ C5 <-> I5					(fi5,bi5)

	CONSERVE C1 + C2 + C3 + C4 + C5 + O + I1 + I2 + I3 + I4 + I5 + I6 = 1
}

LINEAR seqinitial { : sets initial equilibrium
	~          I1*bi1 + C2*b01 - C1*(    fi1+f01) = 0
	~ C1*f01 + I2*bi2 + C3*b02 - C2*(b01+fi2+f02) = 0
	~ C2*f02 + I3*bi3 + C4*b03 - C3*(b02+fi3+f03) = 0
	~ C3*f03 + I4*bi4 + C5*b04 - C4*(b03+fi4+f04) = 0
	~ C4*f04 + I5*bi5 + O*b0O  - C5*(b04+fi5+f0O) = 0
	~ C5*f0O + I6*bin          - O*(b0O+fin)      = 0

	~          C1*fi1 + I2*b11 - I1*(    bi1+f11) = 0
	~ I1*f11 + C2*fi2 + I3*b12 - I2*(b11+bi2+f12) = 0
	~ I2*f12 + C3*fi3 + I4*bi3 - I3*(b12+bi3+f13) = 0
	~ I3*f13 + C4*fi4 + I5*b14 - I4*(b13+bi4+f14) = 0
	~ I4*f14 + C5*fi5 + I6*b1n - I5*(b14+bi5+f1n) = 0
	
	~ C1 + C2 + C3 + C4 + C5 + O + I1 + I2 + I3 + I4 + I5 + I6 = 1
}

PROCEDURE rates(v(mV) )
{
  LOCAL qt
  qt = 2.3^((celsius-37)/10)

	f01 = qt * 4 * alpha * exp(v/x1)
	f02 = qt * 3 * alpha * exp(v/x1)
	f03 = qt * 2 * alpha * exp(v/x1)
	f04 = qt * 1 * alpha * exp(v/x1)
	f0O = qt * gamma
	f11 = qt * 4 * alpha * alfac * exp(v/x1)
	f12 = qt * 3 * alpha * alfac * exp(v/x1)
	f13 = qt * 2 * alpha * alfac * exp(v/x1)
	f14 = qt * 1 * alpha * alfac * exp(v/x1)
	f1n = qt * gamma
	fi1 = qt * Con
	fi2 = qt * Con * alfac
	fi3 = qt * Con * alfac^2
	fi4 = qt * Con * alfac^3
	fi5 = qt * Con * alfac^4
	fin = qt * Oon

	b01 = qt * 1 * beta * exp(v/x2)
	b02 = qt * 2 * beta * exp(v/x2)
	b03 = qt * 3 * beta * exp(v/x2)
	b04 = qt * 4 * beta * exp(v/x2)
	b0O = qt * delta
	b11 = qt * 1 * beta * exp(v/x2) / btfac
	b12 = qt * 2 * beta * exp(v/x2) / btfac
	b13 = qt * 3 * beta * exp(v/x2) / btfac
	b14 = qt * 4 * beta * exp(v/x2) / btfac
	b1n = qt * delta
	bi1 = qt * Coff
	bi2 = qt * Coff / (btfac)
	bi3 = qt * Coff / (btfac^2)
	bi4 = qt * Coff / (btfac^3)
	bi5 = qt * Coff / (btfac^4)
	bin = qt * Ooff
}