File: Nap.mod

package info (click to toggle)
bmtk 0.0%2Bgit20210109.8572664%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,876 kB
  • sloc: python: 24,853; javascript: 1,998; makefile: 34; sh: 16
file content (77 lines) | stat: -rw-r--r-- 1,170 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
:Reference : Modeled according to kinetics derived from Magistretti & Alonso 1999
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX Nap
	USEION na READ ena WRITE ina
	RANGE gbar, g, ina
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ena	(mV)
	ina	(mA/cm2)
	g	(S/cm2)
	celsius (degC)
	mInf
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	rates()
	g = gbar*mInf*h
	ina = g*(v-ena)
}

DERIVATIVE states	{
	rates()
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((celsius-21)/10)

	UNITSOFF
		mInf = 1.0/(1+exp((v- -52.6)/-4.6)) : assuming instantaneous activation as modeled by Magistretti and Alonso

		hInf = 1.0/(1+exp((v- -48.8)/10))
		hAlpha = 2.88e-6 * vtrap(v + 17, 4.63)
		hBeta = 6.94e-6 * vtrap(-(v + 64.4), 2.63)

		hTau = (1/(hAlpha + hBeta))/qt
	UNITSON
}

FUNCTION vtrap(x, y) { : Traps for 0 in denominator of rate equations
	UNITSOFF
	if (fabs(x / y) < 1e-6) {
		vtrap = y * (1 - x / y / 2)
	} else {
		vtrap = x / (exp(x / y) - 1)
	}
	UNITSON
}