File: build_cortex.py

package info (click to toggle)
bmtk 0.0%2Bgit20210109.8572664%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,876 kB
  • sloc: python: 24,853; javascript: 1,998; makefile: 34; sh: 16
file content (189 lines) | stat: -rw-r--r-- 8,316 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import math
import random

from bmtk.builder.networks import NetworkBuilder
from bmtk.builder.auxi.node_params import positions_columinar, xiter_random
from bmtk.builder.auxi.edge_connectors import distance_connector

net = NetworkBuilder("V1")
net.add_nodes(N=80, pop_name='Scnn1a',
              positions=positions_columinar(N=80, center=[0, 50.0, 0], max_radius=30.0, height=100.0),
              rotation_angle_yaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi),
              rotation_angle_zaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi),
              tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False),
              location='VisL4',
              ei='e',
              model_type='biophysical',
              model_template='ctdb:Biophys1.hoc',
              model_processing='aibs_perisomatic',
              dynamics_params='472363762_fit.json',
              morphology='Scnn1a.swc')

net.add_nodes(N=20, pop_name='PV',
              positions=positions_columinar(N=20, center=[0, 50.0, 0], max_radius=30.0, height=100.0),
              rotation_angle_yaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi),
              rotation_angle_zaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi),
              location='VisL4',
              ei='i',
              model_type='biophysical',
              model_template='ctdb:Biophys1.hoc',
              model_processing='aibs_perisomatic',
              dynamics_params='472912177_fit.json',
              morphology='Pvalb.swc')

net.add_nodes(N=200, pop_name='LIF_exc',
              positions=positions_columinar(N=200, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),
              tuning_angle=np.linspace(start=0.0, stop=360.0, num=200, endpoint=False),
              location='VisL4',
              ei='e',
              model_type='point_process',
              model_template='nrn:IntFire1',
              dynamics_params='IntFire1_exc_1.json')

net.add_nodes(N=100, pop_name='LIF_inh',
              positions=positions_columinar(N=100, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),
              location='VisL4',
              ei='i',
              model_type='point_process',
              model_template='nrn:IntFire1',
              dynamics_params='IntFire1_inh_1.json')


## Generating E-to-E connections
def dist_tuning_connector(source, target, d_weight_min, d_weight_max, d_max, t_weight_min, t_weight_max, nsyn_min,
                          nsyn_max):
    if source['node_id'] == target['node_id']:
        # Avoid self-connections.n_nodes
        return None

    r = np.linalg.norm(np.array(source['positions']) - np.array(target['positions']))
    if r > d_max:
        dw = 0.0
    else:
        t = r / d_max
        dw = d_weight_max * (1.0 - t) + d_weight_min * t

    if dw <= 0:
        # drop the connection if the weight is too low
        return None

    # next create weights by orientation tuning [ aligned, misaligned ] --> [ 1, 0 ], Check that the orientation
    # tuning property exists for both cells; otherwise, ignore the orientation tuning.
    if 'tuning_angel' in source and 'tuning_angle' in target:

        # 0-180 is the same as 180-360, so just modulo by 180
        delta_tuning = math.fmod(abs(source['tuning_angle'] - target['tuning_angle']), 180.0)

        # 90-180 needs to be flipped, then normalize to 0-1
        delta_tuning = delta_tuning if delta_tuning < 90.0 else 180.0 - delta_tuning

        t = delta_tuning / 90.0
        tw = t_weight_max * (1.0 - t) + t_weight_min * t
    else:
        tw = dw

    # drop the connection if the weight is too low
    if tw <= 0:
        return None

    # filter out nodes by treating the weight as a probability of connection
    if random.random() > tw:
        return None

    # Add the number of synapses for every connection.
    # It is probably very useful to take this out into a separate function.
    return random.randint(nsyn_min, nsyn_max)

net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'},
              connection_rule=dist_tuning_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 300.0, 't_weight_min': 0.5,
                                 't_weight_max': 1.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=6.4e-05,
              weight_function='gaussianLL',
              weight_sigma=50.0,
              distance_range=[30.0, 150.0],
              target_sections=['basal', 'apical'],
              delay=2.0,
              dynamics_params='AMPA_ExcToExc.json',
              model_template='exp2syn')

net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'},
              connection_rule=dist_tuning_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 300.0, 't_weight_min': 0.5,
                                 't_weight_max': 1.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.0019,
              weight_function='gaussianLL',
              weight_sigma=50.0,
              delay=2.0,
              dynamics_params='instanteneousExc.json',
              model_template='exp2syn')


### Generating I-to-I connections
net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'model_type': 'biophysical'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.0002,
              weight_function='wmax',
              distance_range=[0.0, 1e+20],
              target_sections=['somatic', 'basal'],
              delay=2.0,
              dynamics_params='GABA_InhToInh.json',
              model_template='exp2syn')

net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'model_type': 'point_process'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.00225,
              weight_function='wmax',
              delay=2.0,
              dynamics_params='instanteneousInh.json',
              model_template='exp2syn')

### Generating I-to-E connections
net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'biophysical'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.00018,
              weight_function='wmax',
              distance_range=[0.0, 50.0],
              target_sections=['somatic', 'basal', 'apical'],
              delay=2.0,
              dynamics_params='GABA_InhToExc.json',
              model_template='exp2syn')

net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'model_type': 'point_process'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.009,
              weight_function='wmax',
              delay=2.0,
              dynamics_params='instanteneousInh.json',
              model_template='exp2syn')

### Generating E-to-I connections
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.26, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.00035,
              weight_function='wmax',
              distance_range=[0.0, 1e+20],
              target_sections=['somatic', 'basal'],
              delay=2.0,
              dynamics_params='AMPA_ExcToInh.json',
              model_template='exp2syn')


net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.26, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=0.0043,
              weight_function='wmax',
              delay=2.0,
              dynamics_params='instanteneousExc.json',
              model_template='exp2syn')

net.build()
net.save_nodes(output_dir='network')
net.save_edges(output_dir='network')